
Linux From Scratch

Version 6.8

Created by Gerard Beekmans
Edited by Matthew Burgess and Bruce Dubbs

Linux From Scratch: Version 6.8
by Created by Gerard Beekmans and Edited by Matthew Burgess and Bruce Dubbs
Copyright © 1999-2011 Gerard Beekmans

Copyright © 1999-2011, Gerard Beekmans

All rights reserved.

This book is licensed under a Creative Commons License.

Computer instructions may be extracted from the book under the MIT License.

Linux® is a registered trademark of Linus Torvalds.

Linux From Scratch - Version 6.8

iii

Table of Contents
Preface ... viii

i. Foreword .. viii
ii. Audience ... viii
iii. LFS Target Architectures .. ix
iv. LFS and Standards ... x
v. Rationale for Packages in the Book ... xi
vi. Prerequisites .. xv
vii. Host System Requirements .. xvi
viii. Typography .. xix
ix. Structure .. xx
x. Errata .. xx

I. Introduction ... 1
1. Introduction .. 2

1.1. How to Build an LFS System .. 2
1.2. What's new since the last release ... 3
1.3. Changelog ... 4
1.4. Resources .. 7
1.5. Help ... 8

II. Preparing for the Build ... 10
2. Preparing a New Partition ... 11

2.1. Introduction ... 11
2.2. Creating a New Partition .. 11
2.3. Creating a File System on the Partition ... 12
2.4. Mounting the New Partition ... 13

3. Packages and Patches .. 15
3.1. Introduction ... 15
3.2. All Packages ... 15
3.3. Needed Patches ... 21

4. Final Preparations .. 23
4.1. About $LFS .. 23
4.2. Creating the $LFS/tools Directory ... 23
4.3. Adding the LFS User ... 24
4.4. Setting Up the Environment ... 24
4.5. About SBUs .. 26
4.6. About the Test Suites ... 26

5. Constructing a Temporary System .. 28
5.1. Introduction ... 28
5.2. Toolchain Technical Notes ... 28
5.3. General Compilation Instructions ... 30
5.4. Binutils-2.21 - Pass 1 ... 32
5.5. GCC-4.5.2 - Pass 1 ... 34
5.6. Linux-2.6.37 API Headers .. 36
5.7. Glibc-2.13 ... 37
5.8. Adjusting the Toolchain ... 39
5.9. Binutils-2.21 - Pass 2 ... 41

Linux From Scratch - Version 6.8

iv

5.10. GCC-4.5.2 - Pass 2 ... 43
5.11. Tcl-8.5.9 .. 47
5.12. Expect-5.45 ... 49
5.13. DejaGNU-1.4.4 ... 51
5.14. Ncurses-5.7 ... 52
5.15. Bash-4.2 .. 53
5.16. Bzip2-1.0.6 .. 54
5.17. Coreutils-8.10 .. 55
5.18. Diffutils-3.0 ... 56
5.19. File-5.05 .. 57
5.20. Findutils-4.4.2 ... 58
5.21. Gawk-3.1.8 .. 59
5.22. Gettext-0.18.1.1 ... 60
5.23. Grep-2.7 .. 61
5.24. Gzip-1.4 ... 62
5.25. M4-1.4.15 .. 63
5.26. Make-3.82 ... 64
5.27. Patch-2.6.1 .. 65
5.28. Perl-5.12.3 ... 66
5.29. Sed-4.2.1 ... 67
5.30. Tar-1.25 ... 68
5.31. Texinfo-4.13a .. 69
5.32. Xz-5.0.1 ... 70
5.33. Stripping .. 71
5.34. Changing Ownership .. 71

III. Building the LFS System .. 72
6. Installing Basic System Software .. 73

6.1. Introduction ... 73
6.2. Preparing Virtual Kernel File Systems ... 73
6.3. Package Management ... 74
6.4. Entering the Chroot Environment .. 77
6.5. Creating Directories .. 78
6.6. Creating Essential Files and Symlinks ... 79
6.7. Linux-2.6.37 API Headers .. 81
6.8. Man-pages-3.32 ... 82
6.9. Glibc-2.13 ... 83
6.10. Re-adjusting the Toolchain ... 90
6.11. Zlib-1.2.5 ... 92
6.12. Binutils-2.21 .. 93
6.13. GMP-5.0.1 ... 96
6.14. MPFR-3.0.0 ... 98
6.15. MPC-0.8.2 ... 99
6.16. GCC-4.5.2 ... 100
6.17. Sed-4.2.1 ... 105
6.18. Pkg-config-0.25 ... 106
6.19. Ncurses-5.7 .. 107
6.20. Util-linux-2.19 ... 110

Linux From Scratch - Version 6.8

v

6.21. E2fsprogs-1.41.14 ... 114
6.22. Coreutils-8.10 .. 117
6.23. Iana-Etc-2.30 ... 122
6.24. M4-1.4.15 .. 123
6.25. Bison-2.4.3 .. 124
6.26. Procps-3.2.8 ... 125
6.27. Grep-2.7 .. 127
6.28. Readline-6.2 .. 128
6.29. Bash-4.2 .. 130
6.30. Libtool-2.4 ... 132
6.31. GDBM-1.8.3 ... 133
6.32. Inetutils-1.8 ... 134
6.33. Perl-5.12.3 ... 136
6.34. Autoconf-2.68 ... 139
6.35. Automake-1.11.1 ... 140
6.36. Bzip2-1.0.6 .. 142
6.37. Diffutils-3.0 ... 144
6.38. Gawk-3.1.8 .. 145
6.39. File-5.05 .. 146
6.40. Findutils-4.4.2 ... 147
6.41. Flex-2.5.35 .. 149
6.42. Gettext-0.18.1.1 ... 151
6.43. Groff-1.21 ... 153
6.44. GRUB-1.98 ... 156
6.45. Gzip-1.4 ... 158
6.46. IPRoute2-2.6.37 .. 160
6.47. Kbd-1.15.2 .. 162
6.48. Less-436 .. 164
6.49. Make-3.82 ... 165
6.50. Xz-5.0.1 ... 166
6.51. Man-DB-2.5.9 ... 168
6.52. Module-Init-Tools-3.12 ... 171
6.53. Patch-2.6.1 .. 173
6.54. Psmisc-22.13 ... 174
6.55. Shadow-4.1.4.3 .. 175
6.56. Sysklogd-1.5 .. 178
6.57. Sysvinit-2.88dsf .. 179
6.58. Tar-1.25 ... 182
6.59. Texinfo-4.13a .. 183
6.60. Udev-166 ... 185
6.61. Vim-7.3 ... 188
6.62. About Debugging Symbols ... 191
6.63. Stripping Again ... 191
6.64. Cleaning Up .. 192

7. Setting Up System Bootscripts .. 193
7.1. Introduction ... 193
7.2. LFS-Bootscripts-20100627 ... 194

Linux From Scratch - Version 6.8

vi

7.3. How Do These Bootscripts Work? ... 196
7.4. Configuring the setclock Script .. 197
7.5. Configuring the Linux Console .. 197
7.6. Configuring the sysklogd Script ... 200
7.7. Creating the /etc/inputrc File .. 200
7.8. The Bash Shell Startup Files .. 203
7.9. Device and Module Handling on an LFS System .. 204
7.10. Creating Custom Symlinks to Devices ... 208
7.11. Configuring the localnet Script .. 210
7.12. Customizing the /etc/hosts File .. 210
7.13. Configuring the network Script .. 211

8. Making the LFS System Bootable .. 214
8.1. Introduction ... 214
8.2. Creating the /etc/fstab File ... 214
8.3. Linux-2.6.37 .. 216
8.4. Using GRUB to Set Up the Boot Process .. 219

9. The End .. 223
9.1. The End ... 223
9.2. Get Counted .. 223
9.3. Rebooting the System ... 223
9.4. What Now? ... 224

IV. Appendices ... 226
A. Acronyms and Terms .. 227
B. Acknowledgments ... 230
C. Dependencies ... 233
D. Boot and sysconfig scripts version-20100627 .. 242

D.1. /etc/rc.d/init.d/rc ... 242
D.2. /etc/rc.d/init.d/functions .. 244
D.3. /etc/rc.d/init.d/mountkernfs .. 257
D.4. /etc/rc.d/init.d/consolelog ... 258
D.5. /etc/rc.d/init.d/modules ... 259
D.6. /etc/rc.d/init.d/udev ... 261
D.7. /etc/rc.d/init.d/swap .. 262
D.8. /etc/rc.d/init.d/setclock ... 263
D.9. /etc/rc.d/init.d/checkfs .. 264
D.10. /etc/rc.d/init.d/mountfs ... 266
D.11. /etc/rc.d/init.d/udev_retry ... 267
D.12. /etc/rc.d/init.d/cleanfs ... 268
D.13. /etc/rc.d/init.d/console .. 270
D.14. /etc/rc.d/init.d/localnet .. 272
D.15. /etc/rc.d/init.d/sysctl ... 273
D.16. /etc/rc.d/init.d/sysklogd .. 274
D.17. /etc/rc.d/init.d/network ... 275
D.18. /etc/rc.d/init.d/sendsignals .. 276
D.19. /etc/rc.d/init.d/reboot .. 277
D.20. /etc/rc.d/init.d/halt .. 278
D.21. /etc/rc.d/init.d/template ... 278

Linux From Scratch - Version 6.8

vii

D.22. /etc/sysconfig/rc ... 279
D.23. /etc/sysconfig/modules ... 280
D.24. /etc/sysconfig/createfiles .. 280
D.25. /etc/sysconfig/network-devices/ifup ... 280
D.26. /etc/sysconfig/network-devices/ifdown .. 282
D.27. /etc/sysconfig/network-devices/services/ipv4-static ... 284
D.28. /etc/sysconfig/network-devices/services/ipv4-static-route ... 285

E. Udev configuration rules ... 288
E.1. 55-lfs.rules .. 288

F. LFS Licenses ... 289
F.1. Creative Commons License .. 289
F.2. The MIT License .. 293

Index ... 294

Linux From Scratch - Version 6.8

viii

Preface
Foreword

My journey to learn and better understand Linux began over a decade ago, back in 1998. I had just installed my first
Linux distribution and had quickly become intrigued with the whole concept and philosophy behind Linux.

There are always many ways to accomplish a single task. The same can be said about Linux distributions. A great
many have existed over the years. Some still exist, some have morphed into something else, yet others have been
relegated to our memories. They all do things differently to suit the needs of their target audience. Because so many
different ways to accomplish the same end goal exist, I began to realize I no longer had to be limited by any one
implementation. Prior to discovering Linux, we simply put up with issues in other Operating Systems as you had no
choice. It was what it was, whether you liked it or not. With Linux, the concept of choice began to emerge. If you
didn't like something, you were free, even encouraged, to change it.

I tried a number of distributions and could not decide on any one. They were great systems in their own right. It
wasn't a matter of right and wrong anymore. It had become a matter of personal taste. With all that choice available,
it became apparent that there would not be a single system that would be perfect for me. So I set out to create my
own Linux system that would fully conform to my personal preferences.

To truly make it my own system, I resolved to compile everything from source code instead of using pre-compiled
binary packages. This “perfect” Linux system would have the strengths of various systems without their perceived
weaknesses. At first, the idea was rather daunting. I remained committed to the idea that such a system could be built.

After sorting through issues such as circular dependencies and compile-time errors, I finally built a custom-built
Linux system. It was fully operational and perfectly usable like any of the other Linux systems out there at the time.
But it was my own creation. It was very satisfying to have put together such a system myself. The only thing better
would have been to create each piece of software myself. This was the next best thing.

As I shared my goals and experiences with other members of the Linux community, it became apparent that there was
a sustained interest in these ideas. It quickly became plain that such custom-built Linux systems serve not only to meet
user specific requirements, but also serve as an ideal learning opportunity for programmers and system administrators
to enhance their (existing) Linux skills. Out of this broadened interest, the Linux From Scratch Project was born.

This Linux From Scratch book is the central core around that project. It provides the background and instructions
necessary for you to design and build your own system. While this book provides a template that will result in a
correctly working system, you are free to alter the instructions to suit yourself, which is, in part, an important part of
this project. You remain in control; we just lend a helping hand to get you started on your own journey.

I sincerely hope you will have a great time working on your own Linux From Scratch system and enjoy the numerous
benefits of having a system that is truly your own.

--
Gerard Beekmans
gerard@linuxfromscratch.org

Audience
There are many reasons why you would want to read this book. One of the questions many people raise is, “why
go through all the hassle of manually building a Linux system from scratch when you can just download and install
an existing one?”

Linux From Scratch - Version 6.8

ix

One important reason for this project's existence is to help you learn how a Linux system works from the inside out.
Building an LFS system helps demonstrate what makes Linux tick, and how things work together and depend on
each other. One of the best things that this learning experience can provide is the ability to customize a Linux system
to suit your own unique needs.

Another key benefit of LFS is that it allows you to have more control over the system without relying on someone
else's Linux implementation. With LFS, you are in the driver's seat and dictate every aspect of the system.

LFS allows you to create very compact Linux systems. When installing regular distributions, you are often forced to
install a great many programs which are probably never used or understood. These programs waste resources. You
may argue that with today's hard drive and CPUs, such resources are no longer a consideration. Sometimes, however,
you are still constrained by size considerations if nothing else. Think about bootable CDs, USB sticks, and embedded
systems. Those are areas where LFS can be beneficial.

Another advantage of a custom built Linux system is security. By compiling the entire system from source code, you
are empowered to audit everything and apply all the security patches desired. It is no longer necessary to wait for
somebody else to compile binary packages that fix a security hole. Unless you examine the patch and implement it
yourself, you have no guarantee that the new binary package was built correctly and adequately fixes the problem.

The goal of Linux From Scratch is to build a complete and usable foundation-level system. If you do not wish to
build your own Linux system from scratch, you may not entirely benefit from the information in this book.

There are too many other good reasons to build your own LFS system to list them all here. In the end, education
is by far the most powerful of reasons. As you continue in your LFS experience, you will discover the power that
information and knowledge truly bring.

LFS Target Architectures
The primary target architecture of LFS is the 32-bit Intel CPU. If you have not built an LFS system before, you
should probably start with that target. The 32-bit architecture is the most widely supported Linux system and is most
compatible with both open source and proprietary software.

On the other hand, the instructions in this book are known to work, with some modifications, with both Power PC and
64-bit AMD/Intel CPUs. To build a system that utilizes one of these CPUs, the main prerequisite, in addition to those
on the next few pages, is an existing Linux system such as an earlier LFS installation, Ubuntu, Red Hat/Fedora, SuSE,
or other distribution that targets the architecture that you have. Also note that a 32-bit distribution can be installed
and used as a host system on a 64-bit AMD/Intel computer.

Some other facts about 64-bit systems need to be added here. When compared to a 32-bit system, the sizes of
executable programs are slightly larger and the execution speeds are only slightly faster. For example, in a test build
of LFS-6.5 on a Core2Duo CPU based system, the following statistics were measured:

Architecture Build Time Build Size
32-bit 198.5 minutes 648 MB
64-bit 190.6 minutes 709 MB

As you can see, the 64-bit build is only 4% faster and is 9% larger than the 32-bit build. The gain from going to a
64-bit system is relatively minimal. Of course, if you have more than 4GB of RAM or want to manipulate data that
exceeds 4GB, the advantages of a 64-bit system are substantial.

Linux From Scratch - Version 6.8

x

The default 64-bit build that results from LFS is considered a "pure" 64-bit system. That is, it supports 64-bit
executables only. Building a "multi-lib" system requires compiling many applications twice, once for a 32-bit system
and once for a 64-bit system. This is not directly supported in LFS because it would interfere with the educational
objective of providing the instructions needed for a straightforward base Linux system. You can refer to the Cross
Linux From Scratch project for this advanced topic.

There is one last comment about 64-bit systems. There are some packages that cannot currently be built in a "pure"
64-bit system or require specialized build instructions. Generally, these packages have some embedded 32-bit specific
assembly language instructions that fail when building on a 64-bit system. This includes some Xorg drivers from
Beyond Linux From Scratch (BLFS). Many of these problems can be worked around, but may require some specialized
procedures or patches.

LFS and Standards
The structure of LFS follows Linux standards as closely as possible. The primary standards are:

• The Single UNIX Specification Version 3 (POSIX). Note: Free registration is required.

• Filesystem Hierarchy Standard (FHS)

• Linux Standard Base (LSB) Core Specification 4.0

The LSB has five separate standards: Core, C++, Desktop, Runtime Languages, and Printing. In addition
to generic requirements there are also architecture specific requirements. LFS attempts to conform to the
architectures discussed in the previous section.

Note

Many people do not agree with the requirements of the LSB. The main purpose of defining it is to
ensure that proprietary software will be able to be installed and run properly on a compliant system.
Since LFS is source based, the user has complete control over what packages are desired and many
choose not to install some packages that are specified by the LSB.

Creating a complete LFS system capable of passing the LSB certifications tests is possible, but not without many
additional packages that are beyond the scope of LFS. Most of these additional packages have installation instructions
in BLFS.

Packages supplied by LFS needed to satisfy the LSB Requirements

LSB Core: Bash, Binutils, Coreutils, Diffutils, File, Findutils, Gawk, Grep, Gzip, M4,
Man-DB, Ncurses, Procps, Psmisc, Sed, Shadow, Tar, Util-linux, Zlib

LSB C++: Gcc

LSB Desktop: None

LSB Runtime Languages: Perl

LSB Printing: None

LSB Multimeda: None

Packages supplied by BLFS needed to satisfy the LSB Requirements

LSB Core: Bc, Cpio, Ed, Fcrontab, PAM, Sendmail (or Postfix or Exim)

http://trac.cross-lfs.org/
http://trac.cross-lfs.org/
http://www.linuxfromscratch.org/blfs/view/svn/
http://www.unix.org/single_unix_specification
http://www.pathname.com/fhs/pub/fhs-2.3.html
http://refspecs.freestandards.org/LSB_4.0.0/

Linux From Scratch - Version 6.8

xi

LSB C++: None

LSB Desktop: ATK, Cairo, Desktop-file-utils, Freetype, Fontconfig, Glib2, GTK+2,
Icon-naming-utils, Libjpeg, Libpng, Libxml2, MesaLib, Pango, Qt3, Qt4, Xorg

LSB Runtime Languages: Python

LSB Printing: CUPS

LSB Multimeda: Alsa Libraries, NSPR, NSS, OpenSSL, Java

Packages not supplied by LFS or BLFS needed to satisfy the LSB Requirements

LSB Core: At, Batch, Install_initd, Lsb_release, Remove_initd, Test

LSB C++: None

LSB Desktop: None

LSB Runtime Languages: None

LSB Printing: None

LSB Multimeda: Xdg-utils

Rationale for Packages in the Book
As stated earlier, the goal of LFS is to build a complete and usable foundation-level system. This includes all packages
needed to replicate itself while providing a relatively minimal base from which to customize a more complete system
based on the choices of the user. This does not mean that LFS is the smallest system possible. Several important
packages are included that are not strictly required. The lists below document the rationale for each package in the
book.

• Autoconf

This package contains programs for producing shell scripts that can automatically configure source code from a
developer's template. It is often needed to rebuild a package after updates to the build procedures.

• Automake

This package contains programs for generating Make files from a template. It is often needed to rebuild a
package after updates to the build procedures.

• Bash

This package satisfies an LSB core requirement to provide a Bourne Shell interface to the system. It was chosen
over other shell packages because of its common usage and extensive capabilities beyond basic shell functions.

• Binutils

This package contains a linker, an assembler, and other tools for handling object files. The programs in this
package are needed to compile most of the packages in an LFS system and beyond.

• Bison

This package contains the GNU version of yacc (Yet Another Compiler Compiler) needed to build several other
LFS programs.

• Bzip2

Linux From Scratch - Version 6.8

xii

This package contains programs for compressing and decompressing files. It is required to decompress many
LFS packages.

• Coreutils

This package contains a number of essential programs for viewing and manipulating files and directories. These
programs are needed for command line file management, and are necessary for the installation procedures of
every package in LFS.

• DejaGNU

This package contains a framework for testing other programs. It is only installed in the temporary toolchain.

• Diffutils

This package contains programs that show the differences between files or directories. These programs can be
used to create patches, and are also used in many packages' build procedures.

• Expect

This package contains a program for carrying out scripted dialogues with other interactive programs. It is
commonly used for testing other packages. It is only installed in the temporary toolchain.

• E2fsprogs

This package contains the utilities for handling the ext2, ext3 and ext4 file systems. These are the most common
and thoroughly tested file systems that Linux supports.

• File

This package contains a utility for determining the type of a given file or files. A few packages need it to build.

• Findutils

This package contains programs to find files in a file system. It is used in many packages' build scripts.

• Flex

This package contains a utility for generating programs that recognize patterns in text. It is the GNU version of
the lex (lexical analyzer) program. It is required to build several LFS packages.

• Gawk

This package contains programs for manipulating text files. It is the GNU version of awk
(Aho-Weinberg-Kernighan). It is used in many other packages' build scripts.

• Gcc

This package is the Gnu Compiler Collection. It contains the C and C++ compilers as well as several others not
built by LFS.

• GDBM

This package contains the GNU Database Manager library. It is used by one other LFS package, Man-DB.

• Gettext

This package contains utilities and libraries for internationalization and localization of numerous packages.

• Glibc

This package contains the main C library. Linux programs would not run without it.

Linux From Scratch - Version 6.8

xiii

• GMP

This package contains math libraries that provide useful functions for arbitrary precision arithmetic. It is required
to build Gcc.

• Grep

This package contains programs for searching through files. These programs are used by most packages' build
scripts.

• Groff

This package contains programs for processing and formatting text. One important function of these programs is
to format man pages.

• GRUB

This package is the Grand Unified Boot Loader. It is one of several boot loaders available, but is the most
flexible.

• Gzip

This package contains programs for compressing and decompressing files. It is needed to decompress many
packages in LFS and beyond.

• Iana-etc

This package provides data for network services and protocols. It is needed to enable proper networking
capabilities.

• Inetutils

This package contains programs for basic network administration.

• IProute2

This package contains programs for basic and advanced IPv4 and IPv6 networking. It was chosen over the other
common network tools package (net-tools) for its IPv6 capabilities.

• Kbd

This package contains key-table files, keyboard utilities for non-US keyboards, and a number of console fonts.

• Less

This package contains a very nice text file viewer that allows scrolling up or down when viewing a file. It is also
used by Man-DB for viewing manpages.

• Libtool

This package contains the GNU generic library support script. It wraps the complexity of using shared libraries
in a consistent, portable interface. It is needed by the test suites in other LFS packages.

• Linux Kernel

This package is the Operating System. It is the Linux in the GNU/Linux environment.

• M4

This package contains a general text macro processor useful as a build tool for other programs.

• Make

Linux From Scratch - Version 6.8

xiv

This package contains a program for directing the building of packages. It is required by almost every package in
LFS.

• Man-DB

This package contains programs for finding and viewing man pages. It was chosen instead of the man package
due to superior internationalization capabilities. It supplies the man program.

• Man-pages

This package contains the actual contents of the basic Linux man pages.

• Module-Init-Tools

This package contains programs needed to administer Linux kernel modules.

• MPC

This package contains functions for the arithmetic of complex numbers. It is required by Gcc.

• MPFR

This package contains functions for multiple precision arithmetic. It is required by Gcc.

• Ncurses

This package contains libraries for terminal-independent handling of character screens. It is often used to provide
cursor control for a menuing system. It is needed by a number of packages in LFS.

• Patch

This package contains a program for modifying or creating files by applying a patch file typically created by the
diff program. It is needed by the build procedure for several LFS packages.

• Perl

This package is an interpreter for the runtime language PERL. It is needed for the installation and test suites of
several LFS packages.

• Pkg-config

This package contains a tool for passing the include path and/or library paths to build tools during the configure
and make processes. It is needed by many LFS packages.

• Procps

This package contains programs for monitoring processes. These programs are useful for system administration,
and are also used by the LFS Bootscripts.

• Psmisc

This package contains programs for displaying information about running processes. These programs are useful
for system administration.

• Readline

This package is a set of libraries that offers command-line editing and history capabilities. It is used by Bash.

• Sed

This package allows editing of text without opening it in a text editor. It is also needed by most LFS packages'
configure scripts.

Linux From Scratch - Version 6.8

xv

• Shadow

This package contains programs for handling passwords in a secure way.

• Sysklogd

This package contains programs for logging system messages, such as those given by the kernel or daemon
processes when unusual events occur.

• Sysvinit

This package provides the init program, which is the parent of all other processes on the Linux system.

• Tar

This package provides archiving and extraction capabilities of virtually all packages used in LFS.

• Tcl

This package contains the Tool Command Language used in many test suites in LFS packages. It is only
installed in the temporary toolchain.

• Texinfo

This package contains programs for reading, writing, and converting info pages. It is used in the installation
procedures of many LFS packages.

• Udev

This package contains programs for dynamic creation of device nodes. It is an alternative to creating thousands
of static devices in the /dev directory.

• Util-linux

This package contains miscellaneous utility programs. Among them are utilities for handling file systems,
consoles, partitions, and messages.

• Vim

This package contains an editor. It was chosen because of its compatibility with the classic vi editor and its huge
number of powerful capabilities. An editor is a very personal choice for many users and any other editor could
be substituted if desired.

• XZ Utils

This package contains programs for compressing and decompressing files. It provides the highest compression
generally available and the useful for decompressing packages XZ or LZMA format.

• Zlib

This package contains compression and decompression routines used by some programs.

Prerequisites
Building an LFS system is not a simple task. It requires a certain level of existing knowledge of Unix system
administration in order to resolve problems and correctly execute the commands listed. In particular, as an absolute
minimum, you should already have the ability to use the command line (shell) to copy or move files and directories, list
directory and file contents, and change the current directory. It is also expected that you have a reasonable knowledge
of using and installing Linux software.

Linux From Scratch - Version 6.8

xvi

Because the LFS book assumes at least this basic level of skill, the various LFS support forums are unlikely to be able
to provide you with much assistance in these areas. You will find that your questions regarding such basic knowledge
will likely go unanswered or you will simply be referred to the LFS essential pre-reading list.

Before building an LFS system, we recommend reading the following HOWTOs:

• Software-Building-HOWTO http:// www. tldp. org/ HOWTO/ Software- Building- HOWTO. html

This is a comprehensive guide to building and installing “generic” Unix software packages under Linux.
Although it was written some time ago, it still provides a good summary of the basic techniques needed to build
and install software.

• The Linux Users' Guide http:// www. linuxhq. com/ guides/ LUG/ guide. html

This guide covers the usage of assorted Linux software. This reference is also fairly old, but still valid.

• The Essential Pre-Reading Hint http:// www. linuxfromscratch. org/ hints/ downloads/ files/ essential_ prereading. txt

This is an LFS Hint written specifically for users new to Linux. It includes a list of links to excellent sources of
information on a wide range of topics. Anyone attempting to install LFS should have an understanding of many
of the topics in this hint.

Host System Requirements
Your host system should have the following software with the minimum versions indicated. This should not be an
issue for most modern Linux distributions. Also note that many distributions will place software headers into separate
packages, often in the form of “<package-name>-devel” or “<package-name>-dev”. Be sure to install those if your
distribution provides them.

Earlier versions of the listed software packages may work, but has not been tested.

• Bash-3.2 (/bin/sh should be a symbolic or hard link to bash)
• Binutils-2.17 (Versions greater than 2.21 are not recommended as they have not been tested)
• Bison-2.3 (/usr/bin/yacc should be a link to bison or small script that executes bison)
• Bzip2-1.0.4
• Coreutils-6.9
• Diffutils-2.8.1
• Findutils-4.2.31
• Gawk-3.1.5 (/usr/bin/awk should be a link to gawk)
• Gcc-4.1.2 (Versions greater than 4.5.2 are not recommended as they have not been tested)
• Glibc-2.5.1 (Versions greater than 2.13 are not recommended as they have not been tested)
• Grep-2.5.1a
• Gzip-1.3.12
• Linux Kernel-2.6.22.5 (having been compiled with GCC-4.1.2 or greater)

The reason for the kernel version requirement is that we specify that version when building glibc in Chapter 6 at
the recommendation of the developers.

If the host kernel is either earlier than 2.6.22.5, or it was not compiled using a GCC-4.1.2 (or later) compiler,
you will need to replace the kernel with one adhering to the specifications. There are two ways you can go about
this. First, see if your Linux vendor provides a 2.6.22.5 or later kernel package. If so, you may wish to install it.

http://www.tldp.org/HOWTO/Software-Building-HOWTO.html
http://www.linuxhq.com/guides/LUG/guide.html
http://www.linuxfromscratch.org/hints/downloads/files/essential_prereading.txt

Linux From Scratch - Version 6.8

xvii

If your vendor doesn't offer an acceptable kernel package, or you would prefer not to install it, you can compile
a kernel yourself. Instructions for compiling the kernel and configuring the boot loader (assuming the host uses
GRUB) are located in Chapter 8.

• M4-1.4.10
• Make-3.81
• Patch-2.5.4
• Perl-5.8.8
• Sed-4.1.5
• Tar-1.18
• Texinfo-4.9

Note that the symlinks mentioned above are required to build an LFS system using the instructions contained within
this book. Symlinks that point to other software (such as dash, mawk, etc.) may work, but are not tested or supported
by the LFS development team, and may require either deviation from the instructions or additional patches to some
packages.

Linux From Scratch - Version 6.8

xviii

To see whether your host system has all the appropriate versions, and the ability to compile programs, run the
following:

cat > version-check.sh << "EOF"
#!/bin/bash
export LC_ALL=C

Simple script to list version numbers of critical development tools

bash --version | head -n1 | cut -d" " -f2-4
echo "/bin/sh -> `readlink -f /bin/sh`"
echo -n "Binutils: "; ld --version | head -n1 | cut -d" " -f3-
bison --version | head -n1
if [-e /usr/bin/yacc];
 then echo "/usr/bin/yacc -> `readlink -f /usr/bin/yacc`";
 else echo "yacc not found"; fi
bzip2 --version 2>&1 < /dev/null | head -n1 | cut -d" " -f1,6-
echo -n "Coreutils: "; chown --version | head -n1 | cut -d")" -f2
diff --version | head -n1
find --version | head -n1
gawk --version | head -n1
if [-e /usr/bin/awk];
 then echo "/usr/bin/awk -> `readlink -f /usr/bin/awk`";
 else echo "awk not found"; fi
gcc --version | head -n1
/lib/libc.so.6 | head -n1 | cut -d"," -f1
grep --version | head -n1
gzip --version | head -n1
cat /proc/version
m4 --version | head -n1
make --version | head -n1
patch --version | head -n1
echo Perl `perl -V:version`
sed --version | head -n1
tar --version | head -n1
echo "Texinfo: `makeinfo --version | head -n1`"
echo 'main(){}' > dummy.c && gcc -o dummy dummy.c
if [-x dummy]; then echo "Compilation OK";
 else echo "Compilation failed"; fi
rm -f dummy.c dummy

EOF

bash version-check.sh

Linux From Scratch - Version 6.8

xix

Typography
To make things easier to follow, there are a few typographical conventions used throughout this book. This section
contains some examples of the typographical format found throughout Linux From Scratch.

./configure --prefix=/usr

This form of text is designed to be typed exactly as seen unless otherwise noted in the surrounding text. It is also used
in the explanation sections to identify which of the commands is being referenced.

In some cases, a logical line is extended to two or more physical lines with a backslash at the end of the line.

CC="gcc -B/usr/bin/" ../binutils-2.18/configure \
 --prefix=/tools --disable-nls --disable-werror

Note that the backslash must be followed by an immediate return. Other whitespace characters like spaces or tab
characters will create incorrect results.

install-info: unknown option '--dir-file=/mnt/lfs/usr/info/dir'

This form of text (fixed-width text) shows screen output, usually as the result of commands issued. This format is
also used to show filenames, such as / etc/ ld. so. conf.

Emphasis

This form of text is used for several purposes in the book. Its main purpose is to emphasize important points or items.

http:// www. linuxfromscratch. org/

This format is used for hyperlinks both within the LFS community and to external pages. It includes HOWTOs,
download locations, and websites.

cat > $LFS/etc/group << "EOF"
root:x:0:
bin:x:1:
......
EOF

This format is used when creating configuration files. The first command tells the system to create the file
$LFS/ etc/ group from whatever is typed on the following lines until the sequence End Of File (EOF) is
encountered. Therefore, this entire section is generally typed as seen.

<REPLACED TEXT>

This format is used to encapsulate text that is not to be typed as seen or for copy-and-paste operations.

[OPTIONAL TEXT]

This format is used to encapsulate text that is optional.

passwd(5)

This format is used to refer to a specific manual (man) page. The number inside parentheses indicates a specific section
inside the manuals. For example, passwd has two man pages. Per LFS installation instructions, those two man pages
will be located at / usr/ share/ man/ man1/ passwd. 1 and / usr/ share/ man/ man5/ passwd. 5. When
the book uses passwd(5) it is specifically referring to / usr/ share/ man/ man5/ passwd. 5. man passwd

http://www.linuxfromscratch.org/

Linux From Scratch - Version 6.8

xx

will print the first man page it finds that matches “passwd”, which will be / usr/ share/ man/ man1/ passwd.
1. For this example, you will need to run man 5 passwd in order to read the specific page being referred to. It should
be noted that most man pages do not have duplicate page names in different sections. Therefore, man <program
name> is generally sufficient.

Structure
This book is divided into the following parts.

Part I - Introduction
Part I explains a few important notes on how to proceed with the LFS installation. This section also provides
meta-information about the book.

Part II - Preparing for the Build
Part II describes how to prepare for the building process—making a partition, downloading the packages, and
compiling temporary tools.

Part III - Building the LFS System
Part III guides the reader through the building of the LFS system—compiling and installing all the packages one by
one, setting up the boot scripts, and installing the kernel. The resulting Linux system is the foundation on which other
software can be built to expand the system as desired. At the end of this book, there is an easy to use reference listing
all of the programs, libraries, and important files that have been installed.

Errata
The software used to create an LFS system is constantly being updated and enhanced. Security warnings and bug fixes
may become available after the LFS book has been released. To check whether the package versions or instructions
in this release of LFS need any modifications to accommodate security vulnerabilities or other bug fixes, please
visit http:// www. linuxfromscratch. org/ lfs/ errata/ 6. 8/ before proceeding with your build. You should note any changes
shown and apply them to the relevant section of the book as you progress with building the LFS system.

http://www.linuxfromscratch.org/lfs/errata/6.8/

Linux From Scratch - Version 6.8

Part I. Introduction

Linux From Scratch - Version 6.8

2

Chapter 1. Introduction

1.1. How to Build an LFS System
The LFS system will be built by using an already installed Linux distribution (such as Debian, Mandriva, Red Hat, or
SUSE). This existing Linux system (the host) will be used as a starting point to provide necessary programs, including
a compiler, linker, and shell, to build the new system. Select the “development” option during the distribution
installation to be able to access these tools.

As an alternative to installing a separate distribution onto your machine, you may wish to use the Linux From Scratch
LiveCD or a LiveCD from a commercial distribution. The LFS LiveCD works well as a host system, providing all the
tools you need to successfully follow the instructions in this book. The LiveCD version is behind the current book,
but is still useful as a host for building the current book. The “-nosrc” or “-min” editions of the LiveCD are the most
appropriate for building a current LFS system. For more information about the LFS LiveCD or to download a copy,
visit http:// www. linuxfromscratch. org/ livecd/.

Note

The LFS LiveCD might not work on newer hardware configurations, failing to boot or failing to detect
some devices such as some SATA hard drives.

Chapter 2 of this book describes how to create a new Linux native partition and file system. This is the place where
the new LFS system will be compiled and installed. Chapter 3 explains which packages and patches need to be
downloaded to build an LFS system and how to store them on the new file system. Chapter 4 discusses the setup of
an appropriate working environment. Please read Chapter 4 carefully as it explains several important issues you need
be aware of before beginning to work your way through Chapter 5 and beyond.

Chapter 5 explains the installation of a number of packages that will form the basic development suite (or toolchain)
which is used to build the actual system in Chapter 6. Some of these packages are needed to resolve circular
dependencies—for example, to compile a compiler, you need a compiler.

Chapter 5 also shows you how to build a first pass of the toolchain, including Binutils and GCC (first pass basically
means these two core packages will be reinstalled). The next step is to build Glibc, the C library. Glibc will be
compiled by the toolchain programs built in the first pass. Then, a second pass of the toolchain will be built. This
time, the toolchain will be dynamically linked against the newly built Glibc. The remaining Chapter 5 packages are
built using this second pass toolchain. When this is done, the LFS installation process will no longer depend on the
host distribution, with the exception of the running kernel.

This effort to isolate the new system from the host distribution may seem excessive. A full technical explanation as
to why this is done is provided in Section 5.2, “Toolchain Technical Notes”.

In Chapter 6, the full LFS system is built. The chroot (change root) program is used to enter a virtual environment and
start a new shell whose root directory will be set to the LFS partition. This is very similar to rebooting and instructing
the kernel to mount the LFS partition as the root partition. The system does not actually reboot, but instead chroot's
because creating a bootable system requires additional work which is not necessary just yet. The major advantage is
that “chrooting” allows you to continue using the host system while LFS is being built. While waiting for package
compilations to complete, you can continue using your computer as normal.

To finish the installation, the LFS-Bootscripts are set up in Chapter 7, and the kernel and boot loader are set up in
Chapter 8. Chapter 9 contains information on continuing the LFS experience beyond this book. After the steps in this
book have been implemented, the computer will be ready to reboot into the new LFS system.

http://www.linuxfromscratch.org/livecd/

Linux From Scratch - Version 6.8

3

This is the process in a nutshell. Detailed information on each step is discussed in the following chapters and package
descriptions. Items that may seem complicated will be clarified, and everything will fall into place as you embark
on the LFS adventure.

1.2. What's new since the last release
Below is a list of package updates made since the previous release of the book.

Upgraded to:

• Autoconf 2.68

• Bash 4.2

• Binutils 2.21

• Bzip2 1.0.6

• Coreutils 8.10

• E2fsprogs 1.41.14

• Expect 5.45

• File 5.05

• GCC 4.5.2

• Glibc 2.13

• Grep 2.7

• Groff 1.21

• IPRoute2 2.6.37

• Libtool 2.4

• Linux 2.6.37

• M4 1.4.15

• Man-DB 2.5.9

• Man-pages 3.32

• Perl 5.12.3

• Psmisc 22.13

• Readline 6.2

• Shadow 4.1.4.3

• Tar 1.25

• TCL 8.5.9

• Udev 166

Added:

• bzip2-1.0.6-install_docs-1.patch

Linux From Scratch - Version 6.8

4

• coreutils-8.10-i18n-1.patch

• coreutils-8.10-uname-1.patch

• gcc-4.5.2-startfiles_fix-1.patch

• glibc-2.13-gcc_fix-1.patch

• perl-5.12.3-libc-1.patch

• procps-3.2.8-fix_HZ_errors-1.patch

• xz-5.0.1

• util-linux-2.19

Removed:

• bash-4.1-fixes-2.patch

• bzip2-1.0.5-install_docs-1.patch

• bzip2-1.0.5-version_fixes-1.patch

• coreutils-8.5-i18n-1.patch

• coreutils-8.5-uname-2.patch

• expect-5.44.1.15-no_tk-1.patch

• gcc-4.5.1-startfiles_fix-1.patch

• glibc-2.12.1-gcc_fix-1.patch

• glibc-2.12.1-makefile_fix-1.patch

• man-db-2.5.7-fix_man_assertion-1.patch

• perl-5.12.1-libc-1.patch

• tar-1.23-overflow_fix-1.patch

• util-linux-ng-2.18

1.3. Changelog
This is version 6.8 of the Linux From Scratch book, dated March 4, 2011. If this book is more than six months old, a
newer and better version is probably already available. To find out, please check one of the mirrors via http:// www.
linuxfromscratch. org/ mirrors. html.

Below is a list of changes made since the previous release of the book.

Changelog Entries:

• 2011-03-04

• [bdubbs] Release LFS 6.8.

• 2011-02-18

• [bdubbs] Fix several urls in Chapter 3. Thanks to splotz90 for the patch.

• [bryan] Fix the sed in the CD-ROM symlinks section, to sync with upstream changes to the file being
modified.

http://www.linuxfromscratch.org/mirrors.html
http://www.linuxfromscratch.org/mirrors.html

Linux From Scratch - Version 6.8

5

• 2011-02-16

• [matthew] Upgrade to Shadow-4.1.4.3. Fixes #2832.

• [matthew] Upgrade to Readline-6.2. Fixes #2831.

• [matthew] Upgrade to Bash-4.2. Fixes #2830.

• [matthew] Upgrade to Udev-166. Fixes #2829.

• 2011-02-10

• [bdubbs] Upgrade to coreutils-8.10. Fixes #2828.

• [bdubbs] Upgrade to Util-linux-2.19. Changed name from util-linux-ng. Fixes #2805.

• 2011-02-04

• [matthew] Upgrade to Glibc-2.13. Fixes #2827.

• [matthew] Upgrade to XZ-5.0.1. Fixes #2826.

• [matthew] Upgrade to Perl-5.12.3. Fixes #2824.

• 2011-01-27

• [bdubbs] Add a sed that modifies incorrect defines in glibc. Thanks to Bryan Kadzban for identifying the
proper fix. Fixes #2820.

• 2011-01-25

• [bdubbs] Add a note about optionally building popt before pkg-config. Fixes #2781.

• 2011-01-24

• [bdubbs] Move chroot man page to man8. Fixes #2782.

• 2011-01-23

• [matthew] Ignore failing tests in Man-DB as they're only due to a change in Groff-1.21's warning output.
Fixes #2823.

• [matthew] Change password hashing from MD5 to SHA-512. Fixes #2814.

• [matthew] Upgrade to File-5.05. Fixes #2821.

• [matthew] Upgrade to IPRoute2-2.6.37. Fixes #2817.

• [matthew] Upgrade to Coreutils-8.9. Fixes #2815.

• 2011-01-10

• [ken] Updated to Linux-2.6.37. Fixes #2816.

• [ken] Updated to Groff-1.21. Fixes #2813.

• 2011-01-04

• [bdubbs] Move XZ-Utils to before Man-DB. Tweak install instructions.

• 2011-01-02

• [bdubbs] Added XZ-Utils as a new compression utility package for independent use or with tar. Fixes #2619.

• 2010-12-29

• [ken] Allow shadow to install its korean and chinese man-pages, since man-db can now format them. Thanks
to William Immendorf for the report.

http://wiki.linuxfromscratch.org/lfs/ticket/2832
http://wiki.linuxfromscratch.org/lfs/ticket/2831
http://wiki.linuxfromscratch.org/lfs/ticket/2830
http://wiki.linuxfromscratch.org/lfs/ticket/2829
http://wiki.linuxfromscratch.org/lfs/ticket/2828
http://wiki.linuxfromscratch.org/lfs/ticket/2805
http://wiki.linuxfromscratch.org/lfs/ticket/2827
http://wiki.linuxfromscratch.org/lfs/ticket/2826
http://wiki.linuxfromscratch.org/lfs/ticket/2824
http://wiki.linuxfromscratch.org/lfs/ticket/2820
http://wiki.linuxfromscratch.org/lfs/ticket/2781
http://wiki.linuxfromscratch.org/lfs/ticket/2782
http://wiki.linuxfromscratch.org/lfs/ticket/2823
http://wiki.linuxfromscratch.org/lfs/ticket/2814
http://wiki.linuxfromscratch.org/lfs/ticket/2821
http://wiki.linuxfromscratch.org/lfs/ticket/2817
http://wiki.linuxfromscratch.org/lfs/ticket/2815
http://wiki.linuxfromscratch.org/lfs/ticket/2816
http://wiki.linuxfromscratch.org/lfs/ticket/2813
http://wiki.linuxfromscratch.org/lfs/ticket/2619

Linux From Scratch - Version 6.8

6

• 2010-12-28

• [matthew] Upgrade to E2fsprogs-1.41.14. Fixes #2812.

• [matthew] Upgrade to Coreutils-8.8. Fixes #2811.

• 2010-12-19

• [matthew] Upgrade to Udev-165. Fixes #2810.

• [matthew] Upgrade to GCC-4.5.2. Fixes #2809.

• [matthew] Upgrade to E2fsprogs-1.41.13. Fixes #2807.

• 2010-12-14

• [matthew] Upgrade to Glibc-2.12.2. Fixes #2804.

• 2010-12-13

• [matthew] Upgrade to Binutils-2.21. Fixes #2803.

• [matthew] Upgrade to Man-Pages-3.32. Fixes #2802.

• [matthew] Upgrade to Linux-2.6.36.2. Fixes #2799.

• [matthew] Upgrade to Man-DB-2.5.9. Fixes #2797.

• 2010-11-18

• [matthew] Upgrade to Man-Pages-3.31. Fixes #2794.

• [matthew] Upgrade to Expect-5.45. Fixes #2791.

• 2010-11-10

• [matthew] Add security fixes for Glibc. Fixes #2790.

• [matthew] Upgrade to Man-Pages-3.30. Fixes #2788.

• [matthew] Mention Inetutils' testsuite, and also install its HTML documentation. Fixes #2784 and #2785

• [matthew] Upgrade to Tar-1.25, and also install its HTML documentation. Fixes #2777 and #2786.

• 2010-10-27

• [bdubbs] Add an example on how to use wget-list. Fixes #2778.

• 2010-10-26

• [bdubbs] Clarify text in Chapter 5 GCC Pass 1 concerning supporting packages.

• 2010-10-24

• [matthew] Upgrade to Udev-164. Fixes #2775.

• [matthew] Upgrade to Man-Pages-3.29. Fixes #2774.

• [matthew] Upgrade to Linux-2.6.36. Fixes #2773.

• [matthew] Upgrade to Coreutils-8.6. Fixes #2771.

• 2010-10-18

• [matthew] Upgrade to Bash 4.1 patch level 9. Fixes #2770.

• [matthew] Upgrade to Udev-163. Fixes #2769.

• [matthew] Upgrade to Man-Pages-3.28. Fixes #2765.

http://wiki.linuxfromscratch.org/lfs/ticket/2812
http://wiki.linuxfromscratch.org/lfs/ticket/2811
http://wiki.linuxfromscratch.org/lfs/ticket/2810
http://wiki.linuxfromscratch.org/lfs/ticket/2809
http://wiki.linuxfromscratch.org/lfs/ticket/2807
http://wiki.linuxfromscratch.org/lfs/ticket/2804
http://wiki.linuxfromscratch.org/lfs/ticket/2803
http://wiki.linuxfromscratch.org/lfs/ticket/2802
http://wiki.linuxfromscratch.org/lfs/ticket/2799
http://wiki.linuxfromscratch.org/lfs/ticket/2797
http://wiki.linuxfromscratch.org/lfs/ticket/2794
http://wiki.linuxfromscratch.org/lfs/ticket/2791
http://wiki.linuxfromscratch.org/lfs/ticket/2790
http://wiki.linuxfromscratch.org/lfs/ticket/2788
http://wiki.linuxfromscratch.org/lfs/ticket/2784
http://wiki.linuxfromscratch.org/lfs/ticket/2785
http://wiki.linuxfromscratch.org/lfs/ticket/2777
http://wiki.linuxfromscratch.org/lfs/ticket/2786
http://wiki.linuxfromscratch.org/lfs/ticket/2778
http://wiki.linuxfromscratch.org/lfs/ticket/2775
http://wiki.linuxfromscratch.org/lfs/ticket/2774
http://wiki.linuxfromscratch.org/lfs/ticket/2773
http://wiki.linuxfromscratch.org/lfs/ticket/2771
http://wiki.linuxfromscratch.org/lfs/ticket/2770
http://wiki.linuxfromscratch.org/lfs/ticket/2769
http://wiki.linuxfromscratch.org/lfs/ticket/2765

Linux From Scratch - Version 6.8

7

• [matthew] Upgrade to Linux-2.6.35.7. Fixes #2764.

• [matthew] Upgrade to Autoconf-2.68. Fixes #2763.

• [matthew] Upgrade to Libtool-2.4. Fixes #2762.

• 2010-09-22

• [matthew] Following r9370, fix the Autoconf underquoting bug in Autoconf itself, rather than just the one
affected LFS package, Pkg-config.

• [matthew] Upgrade to Linux-2.6.35.5. Fixes #2761.

• [matthew] Upgrade to Grep-2.7. Fixes #2760.

• [matthew] Upgrade to Bzip2-1.0.6. Fixes #2759.

• [matthew] Add patch to fix "Unknown HZ value" error in some procps tools. Thanks to DJ Lucas for the
report and patch. Fixes #2758.

• [matthew] Upgrade to Tcl-8.5.9. Fixes #2753.

• [matthew] Upgrade to Perl-5.12.2. Fixes #2752.

• [matthew] Upgrade to Psmisc-22.13. Fixes #2751.

• [matthew] Upgrade to Man-Pages-3.27. Fixes #2750.

• [matthew] Upgrade to Udev-162. Fixes #2747.

• [matthew] Upgrade to M4-1.4.15. Fixes #2744.

• 2010-09-18

• [bdubbs] - LFS-6.7 released.

1.4. Resources

1.4.1. FAQ
If during the building of the LFS system you encounter any errors, have any questions, or think there is a typo in the
book, please start by consulting the Frequently Asked Questions (FAQ) that is located at http:// www. linuxfromscratch.
org/ faq/.

1.4.2. Mailing Lists
The linuxfromscratch. org server hosts a number of mailing lists used for the development of the LFS project.
These lists include the main development and support lists, among others. If the FAQ does not solve the problem you
are having, the next step would be to search the mailing lists at http:// www. linuxfromscratch. org/ search. html.

For information on the different lists, how to subscribe, archive locations, and additional information, visit http:// www.
linuxfromscratch. org/ mail. html.

1.4.3. IRC
Several members of the LFS community offer assistance on our community Internet Relay Chat (IRC) network.
Before using this support, please make sure that your question is not already answered in the LFS FAQ or the mailing
list archives. You can find the IRC network at irc. linuxfromscratch. org. The support channel is named
#LFS-support.

http://wiki.linuxfromscratch.org/lfs/ticket/2764
http://wiki.linuxfromscratch.org/lfs/ticket/2763
http://wiki.linuxfromscratch.org/lfs/ticket/2762
http://wiki.linuxfromscratch.org/lfs/ticket/2761
http://wiki.linuxfromscratch.org/lfs/ticket/2760
http://wiki.linuxfromscratch.org/lfs/ticket/2759
http://wiki.linuxfromscratch.org/lfs/ticket/2758
http://wiki.linuxfromscratch.org/lfs/ticket/2753
http://wiki.linuxfromscratch.org/lfs/ticket/2752
http://wiki.linuxfromscratch.org/lfs/ticket/2751
http://wiki.linuxfromscratch.org/lfs/ticket/2750
http://wiki.linuxfromscratch.org/lfs/ticket/2747
http://wiki.linuxfromscratch.org/lfs/ticket/2744
http://www.linuxfromscratch.org/faq/
http://www.linuxfromscratch.org/faq/
http://www.linuxfromscratch.org/search.html
http://www.linuxfromscratch.org/mail.html
http://www.linuxfromscratch.org/mail.html

Linux From Scratch - Version 6.8

8

1.4.4. Mirror Sites
The LFS project has a number of world-wide mirrors to make accessing the website and downloading the required
packages more convenient. Please visit the LFS website at http:// www. linuxfromscratch. org/ mirrors. html for a list
of current mirrors.

1.4.5. Contact Information
Please direct all your questions and comments to one of the LFS mailing lists (see above).

1.5. Help
If an issue or a question is encountered while working through this book, please check the FAQ page at http:// www.
linuxfromscratch. org/ faq/ #generalfaq. Questions are often already answered there. If your question is not answered
on this page, try to find the source of the problem. The following hint will give you some guidance for troubleshooting:
http:// www. linuxfromscratch. org/ hints/ downloads/ files/ errors. txt.

If you cannot find your problem listed in the FAQ, search the mailing lists at http:// www. linuxfromscratch. org/ search.
html.

We also have a wonderful LFS community that is willing to offer assistance through the mailing lists and IRC (see
the Section 1.4, “Resources” section of this book). However, we get several support questions every day and many
of them can be easily answered by going to the FAQ and by searching the mailing lists first. So, for us to offer the
best assistance possible, you need to do some research on your own first. That allows us to focus on the more unusual
support needs. If your searches do not produce a solution, please include all relevant information (mentioned below)
in your request for help.

1.5.1. Things to Mention
Apart from a brief explanation of the problem being experienced, the essential things to include in any request for
help are:

• The version of the book being used (in this case 6.8)

• The host distribution and version being used to create LFS

• The output from the Section vii, “Host System Requirements” [xviii]

• The package or section the problem was encountered in

• The exact error message or symptom being received

• Note whether you have deviated from the book at all

Note

Deviating from this book does not mean that we will not help you. After all, LFS is about personal
preference. Being upfront about any changes to the established procedure helps us evaluate and determine
possible causes of your problem.

1.5.2. Configure Script Problems
If something goes wrong while running the configure script, review the config. log file. This file may contain
errors encountered during configure which were not printed to the screen. Include the relevant lines if you need to
ask for help.

http://www.linuxfromscratch.org/mirrors.html
http://www.linuxfromscratch.org/faq/#generalfaq
http://www.linuxfromscratch.org/faq/#generalfaq
http://www.linuxfromscratch.org/hints/downloads/files/errors.txt
http://www.linuxfromscratch.org/search.html
http://www.linuxfromscratch.org/search.html

Linux From Scratch - Version 6.8

9

1.5.3. Compilation Problems
Both the screen output and the contents of various files are useful in determining the cause of compilation problems.
The screen output from the configure script and the make run can be helpful. It is not necessary to include the entire
output, but do include enough of the relevant information. Below is an example of the type of information to include
from the screen output from make:

gcc -DALIASPATH=\"/mnt/lfs/usr/share/locale:.\"
-DLOCALEDIR=\"/mnt/lfs/usr/share/locale\"
-DLIBDIR=\"/mnt/lfs/usr/lib\"
-DINCLUDEDIR=\"/mnt/lfs/usr/include\" -DHAVE_CONFIG_H -I. -I.
-g -O2 -c getopt1.c
gcc -g -O2 -static -o make ar.o arscan.o commands.o dir.o
expand.o file.o function.o getopt.o implicit.o job.o main.o
misc.o read.o remake.o rule.o signame.o variable.o vpath.o
default.o remote-stub.o version.o opt1.o
-lutil job.o: In function `load_too_high':
/lfs/tmp/make-3.79.1/job.c:1565: undefined reference
to `getloadavg'
collect2: ld returned 1 exit status
make[2]: *** [make] Error 1
make[2]: Leaving directory `/lfs/tmp/make-3.79.1'
make[1]: *** [all-recursive] Error 1
make[1]: Leaving directory `/lfs/tmp/make-3.79.1'
make: *** [all-recursive-am] Error 2

In this case, many people would just include the bottom section:

make [2]: *** [make] Error 1

This is not enough information to properly diagnose the problem because it only notes that something went wrong,
not what went wrong. The entire section, as in the example above, is what should be saved because it includes the
command that was executed and the associated error message(s).

An excellent article about asking for help on the Internet is available online at http:// catb.
org/ ~esr/ faqs/ smart- questions. html. Read and follow the hints in this document to increase the likelihood of getting
the help you need.

http://catb.org/~esr/faqs/smart-questions.html
http://catb.org/~esr/faqs/smart-questions.html

Linux From Scratch - Version 6.8

Part II. Preparing for the Build

Linux From Scratch - Version 6.8

11

Chapter 2. Preparing a New Partition

2.1. Introduction
In this chapter, the partition which will host the LFS system is prepared. We will create the partition itself, create
a file system on it, and mount it.

2.2. Creating a New Partition
Like most other operating systems, LFS is usually installed on a dedicated partition. The recommended approach to
building an LFS system is to use an available empty partition or, if you have enough unpartitioned space, to create one.

A minimal system requires a partition of around 1.3 gigabytes (GB). This is enough to store all the source tarballs and
compile the packages. However, if the LFS system is intended to be the primary Linux system, additional software
will probably be installed which will require additional space (2-3 GB). The LFS system itself will not take up this
much room. A large portion of this requirement is to provide sufficient free temporary storage. Compiling packages
can require a lot of disk space which will be reclaimed after the package is installed.

Because there is not always enough Random Access Memory (RAM) available for compilation processes, it is a good
idea to use a small disk partition as swap space. This is used by the kernel to store seldom-used data and leave more
memory available for active processes. The swap partition for an LFS system can be the same as the one used by
the host system, in which case it is not necessary to create another one.

Start a disk partitioning program such as cfdisk or fdisk with a command line option naming the hard disk on which
the new partition will be created—for example / dev/ hda for the primary Integrated Drive Electronics (IDE) disk.
Create a Linux native partition and a swap partition, if needed. Please refer to cfdisk(8) or fdisk(8) if you
do not yet know how to use the programs.

Remember the designation of the new partition (e.g., hda5). This book will refer to this as the LFS partition. Also
remember the designation of the swap partition. These names will be needed later for the / etc/ fstab file.

2.2.1. Other Partition Issues
Requests for advice on system partitioning are often posted on the LFS mailing lists. This is a highly subjective topic.
The default for most distributions is to use the entire drive with the exception of one small swap partition. This is not
optimal for LFS for several reasons. It reduces flexibility, makes sharing of data across multiple distributions or LFS
builds more difficult, makes backups more time consuming, and can waste disk space through inefficient allocation
of file system structures.

2.2.1.1. The Root Partition

A root LFS partition (not to be confused with the / root directory) of ten gigabytes is a good compromise for most
systems. It provides enough space to build LFS and most of BLFS, but is small enough so that multiple partitions
can be easily created for experimentation.

2.2.1.2. The Swap Partition

Most distributions automatically create a swap partition. Generally the recommended size of the swap partition is
about twice the amount of physical RAM, however this is rarely needed. If disk space is limited, hold the swap
partition to two gigabytes and monitor the amount of disk swapping.

Linux From Scratch - Version 6.8

12

Swapping is never good. Generally you can tell if a system is swapping by just listening to disk activity and observing
how the system reacts to commands. The first reaction to swapping should be to check for an unreasonable command
such as trying to edit a five gigabyte file. If swapping becomes a normal occurance, the best solution is to purchase
more RAM for your system.

2.2.1.3. Convenience Partitions

There are several other partitions that are not required, but should be considered when designing a disk layout. The
following list is not comprehensive, but is meant as a guide.

• /boot – Highly recommended. Use this partition to store kernels and other booting information. To minimize
potential boot problems with larger disks, make this the first physical partition on your first disk drive. A
partition size of 100 megabytes is quite adequate.

• /home – Highly recommended. Share your home directory and user customization across multiple distributions
or LFS builds. The size is generally fairly large and depends on available disk space.

• /usr – A separate /usr partition is generally used if providing a server for a thin client or diskless workstation. It
is normally not needed for LFS. A size of five gigabytes will handle most installations.

• /opt – This directory is most useful for BLFS where multiple installations of large packages like Gnome or KDE
can be installed without embedding the files in the /usr hierarchy. If used, five to ten gigabytes is generally
adequate.

• /tmp – A separate /tmp directory is rare, but useful if configuring a thin client. This partition, if used, will usually
not need to exceed a couple of gigabytes.

• /usr/src – This partition is very useful for providing a location to store BLFS source files and share them across
LFS builds. It can also be used as a location for building BLFS packages. A reasonably large partition of 30-50
gigabytes allows plenty of room.

Any separate partition that you want automatically mounted upon boot needs to be specified in the / etc/ fstab.
Details about how to specify partitions will be discussed in Section 8.2, “Creating the /etc/fstab File”.

2.3. Creating a File System on the Partition
Now that a blank partition has been set up, the file system can be created. The most widely-used system in the
Linux world is the second extended file system (ext2), but with newer high-capacity hard disks, journaling file
systems are becoming increasingly popular. The third extended filesystem (ext3) is a widely used enhancement
to ext2, which adds journaling capabilities and is compatible with the E2fsprogs utilities. We will create
an ext3 file system. Instructions for creating other file systems can be found at http:// www. linuxfromscratch.
org/ blfs/ view/ svn/ postlfs/ filesystems. html.

To create an ext3 file system on the LFS partition, run the following:

mke2fs -jv /dev/<xxx>

Replace <xxx> with the name of the LFS partition (hda5 in our previous example).

http://www.linuxfromscratch.org/blfs/view/svn/postlfs/filesystems.html
http://www.linuxfromscratch.org/blfs/view/svn/postlfs/filesystems.html

Linux From Scratch - Version 6.8

13

Note

Some host distributions use custom features in their filesystem creation tools (E2fsprogs). This can cause
problems when booting into your new LFS in Chapter 9, as those features will not be supported by the
LFS-installed E2fsprogs; you will get an error similar to “unsupported filesystem features, upgrade your
e2fsprogs”. To check if your host system uses custom enhancements, run the following command:

debugfs -R feature /dev/<xxx>

If the output contains features other than has_ journal, ext_ attr, resize_ inode, dir_ index,
filetype, sparse_ super, large_ file or needs_ recovery, then your host system may have
custom enhancements. In that case, to avoid later problems, you should compile the stock E2fsprogs package
and use the resulting binaries to re-create the filesystem on your LFS partition:

cd /tmp
tar -xzvf /path/to/sources/e2fsprogs-1.41.14.tar.gz
cd e2fsprogs-1.41.14
mkdir -v build
cd build
../configure
make #note that we intentionally don't 'make install' here!
./misc/mke2fs -jv /dev/<xxx>
cd /tmp
rm -rfv e2fsprogs-1.41.14

If you are using an existing swap partition, there is no need to format it. If a new swap partition was created,
it will need to be initialized with this command:

mkswap /dev/<yyy>

Replace <yyy> with the name of the swap partition.

2.4. Mounting the New Partition
Now that a file system has been created, the partition needs to be made accessible. In order to do this, the partition
needs to be mounted at a chosen mount point. For the purposes of this book, it is assumed that the file system is
mounted under / mnt/ lfs, but the directory choice is up to you.

Choose a mount point and assign it to the LFS environment variable by running:

export LFS=/mnt/lfs

Next, create the mount point and mount the LFS file system by running:

mkdir -pv $LFS
mount -v -t ext3 /dev/<xxx> $LFS

Replace <xxx> with the designation of the LFS partition.

Linux From Scratch - Version 6.8

14

If using multiple partitions for LFS (e.g., one for / and another for / usr), mount them using:

mkdir -pv $LFS
mount -v -t ext3 /dev/<xxx> $LFS
mkdir -v $LFS/usr
mount -v -t ext3 /dev/<yyy> $LFS/usr

Replace <xxx> and <yyy> with the appropriate partition names.

Ensure that this new partition is not mounted with permissions that are too restrictive (such as the nosuid, nodev,
or noatime options). Run the mount command without any parameters to see what options are set for the mounted
LFS partition. If nosuid, nodev, and/or noatime are set, the partition will need to be remounted.

If you are using a swap partition, ensure that it is enabled using the swapon command:

/sbin/swapon -v /dev/<zzz>

Replace <zzz> with the name of the swap partition.

Now that there is an established place to work, it is time to download the packages.

Linux From Scratch - Version 6.8

15

Chapter 3. Packages and Patches

3.1. Introduction
This chapter includes a list of packages that need to be downloaded in order to build a basic Linux system. The listed
version numbers correspond to versions of the software that are known to work, and this book is based on their use.
We highly recommend against using newer versions because the build commands for one version may not work with a
newer version. The newest package versions may also have problems that require work-arounds. These work-arounds
will be developed and stabilized in the development version of the book.

Download locations may not always be accessible. If a download location has changed since this book was
published, Google (http:// www. google. com/) provides a useful search engine for most packages. If this search
is unsuccessful, try one of the alternative means of downloading discussed at http:// www. linuxfromscratch.
org/ lfs/ packages. html#packages.

Downloaded packages and patches will need to be stored somewhere that is conveniently available throughout the
entire build. A working directory is also required to unpack the sources and build them. $LFS/ sources can be
used both as the place to store the tarballs and patches and as a working directory. By using this directory, the required
elements will be located on the LFS partition and will be available during all stages of the building process.

To create this directory, execute the following command, as user root, before starting the download session:

mkdir -v $LFS/sources

Make this directory writable and sticky. “Sticky” means that even if multiple users have write permission on a
directory, only the owner of a file can delete the file within a sticky directory. The following command will enable
the write and sticky modes:

chmod -v a+wt $LFS/sources

An easy way to download all of the packages and patches is by using wget-list as an input to wget. For example:

wget -i wget-list -P $LFS/sources

3.2. All Packages
Download or otherwise obtain the following packages:

• Autoconf (2.68) - 1,350 KB:
Home page: http:// www. gnu. org/ software/ autoconf/
Download: http:// ftp. gnu. org/ gnu/ autoconf/ autoconf- 2. 68. tar. bz2
MD5 sum: 864d785215aa60d627c91fcb21b05b07

• Automake (1.11.1) - 1,042 KB:
Home page: http:// www. gnu. org/ software/ automake/
Download: http:// ftp. gnu. org/ gnu/ automake/ automake- 1. 11. 1. tar. bz2
MD5 sum: c2972c4d9b3e29c03d5f2af86249876f

• Bash (4.2) - 6,845 KB:
Home page: http:// www. gnu. org/ software/ bash/
Download: http:// ftp. gnu. org/ gnu/ bash/ bash- 4. 2. tar. gz
MD5 sum: 3fb927c7c33022f1c327f14a81c0d4b0

http://www.google.com/
http://www.linuxfromscratch.org/lfs/packages.html#packages
http://www.linuxfromscratch.org/lfs/packages.html#packages
../wget-list
http://www.gnu.org/software/autoconf/
http://ftp.gnu.org/gnu/autoconf/autoconf-2.68.tar.bz2
http://www.gnu.org/software/automake/
http://ftp.gnu.org/gnu/automake/automake-1.11.1.tar.bz2
http://www.gnu.org/software/bash/
http://ftp.gnu.org/gnu/bash/bash-4.2.tar.gz

Linux From Scratch - Version 6.8

16

• Binutils (2.21) - 18,304 KB:
Home page: http:// www. gnu. org/ software/ binutils/
Download: http:// ftp. gnu. org/ gnu/ binutils/ binutils- 2. 21. tar. bz2
MD5 sum: c84c5acc9d266f1a7044b51c85a823f5

• Bison (2.4.3) - 1,614 KB:
Home page: http:// www. gnu. org/ software/ bison/
Download: http:// ftp. gnu. org/ gnu/ bison/ bison- 2. 4. 3. tar. bz2
MD5 sum: c1d3ea81bc370dbd43b6f0b2cd21287e

• Bzip2 (1.0.6) - 764 KB:
Home page: http:// www. bzip. org/
Download: http:// www. bzip. org/ 1. 0. 6/ bzip2- 1. 0. 6. tar. gz
MD5 sum: 00b516f4704d4a7cb50a1d97e6e8e15b

• Coreutils (8.10) - 11,064 KB:
Home page: http:// www. gnu. org/ software/ coreutils/
Download: http:// ftp. gnu. org/ gnu/ coreutils/ coreutils- 8. 10. tar. gz
MD5 sum: 74d54d09fc5c1bd3337127f49c88b1c5

• DejaGNU (1.4.4) - 1,055 KB:
Home page: http:// www. gnu. org/ software/ dejagnu/
Download: http:// ftp. gnu. org/ gnu/ dejagnu/ dejagnu- 1. 4. 4. tar. gz
MD5 sum: 053f18fd5d00873de365413cab17a666

• Diffutils (3.0) - 1,781 KB:
Home page: http:// www. gnu. org/ software/ diffutils/
Download: http:// ftp. gnu. org/ gnu/ diffutils/ diffutils- 3. 0. tar. gz
MD5 sum: 684aaba1baab743a2a90e52162ff07da

• E2fsprogs (1.41.14) - 4,406 KB:
Home page: http:// e2fsprogs. sourceforge. net/
Download: http:// prdownloads. sourceforge. net/ e2fsprogs/ e2fsprogs- 1. 41. 14. tar. gz
MD5 sum: 05f70470aea2ef7efbb0845b2b116720

• Expect (5.45) - 614 KB:
Home page: http:// expect. sourceforge. net/
Download: http:// prdownloads. sourceforge. net/ expect/ expect5. 45. tar. gz
MD5 sum: 44e1a4f4c877e9ddc5a542dfa7ecc92b

• File (5.05) - 583 KB:
Home page: http:// www. darwinsys. com/ file/
Download: ftp:// ftp. astron. com/ pub/ file/ file- 5. 05. tar. gz
MD5 sum: 0b429063710457be2bd17a18389cb018

Note
File (5.05) may no longer be available at the listed location. The site administrators of the master
download location occasionally remove older versions when new ones are released. An alternative
download location that may have the correct version available can also be found at: http:// www.
linuxfromscratch. org/ lfs/ download. html#ftp.

http://www.gnu.org/software/binutils/
http://ftp.gnu.org/gnu/binutils/binutils-2.21.tar.bz2
http://www.gnu.org/software/bison/
http://ftp.gnu.org/gnu/bison/bison-2.4.3.tar.bz2
http://www.bzip.org/
http://www.bzip.org/1.0.6/bzip2-1.0.6.tar.gz
http://www.gnu.org/software/coreutils/
http://ftp.gnu.org/gnu/coreutils/coreutils-8.10.tar.gz
http://www.gnu.org/software/dejagnu/
http://ftp.gnu.org/gnu/dejagnu/dejagnu-1.4.4.tar.gz
http://www.gnu.org/software/diffutils/
http://ftp.gnu.org/gnu/diffutils/diffutils-3.0.tar.gz
http://e2fsprogs.sourceforge.net/
http://prdownloads.sourceforge.net/e2fsprogs/e2fsprogs-1.41.14.tar.gz
http://expect.sourceforge.net/
http://prdownloads.sourceforge.net/expect/expect5.45.tar.gz
http://www.darwinsys.com/file/
ftp://ftp.astron.com/pub/file/file-5.05.tar.gz
http://www.linuxfromscratch.org/lfs/download.html#ftp
http://www.linuxfromscratch.org/lfs/download.html#ftp

Linux From Scratch - Version 6.8

17

• Findutils (4.4.2) - 2,100 KB:
Home page: http:// www. gnu. org/ software/ findutils/
Download: http:// ftp. gnu. org/ gnu/ findutils/ findutils- 4. 4. 2. tar. gz
MD5 sum: 351cc4adb07d54877fa15f75fb77d39f

• Flex (2.5.35) - 1,227 KB:
Home page: http:// flex. sourceforge. net
Download: http:// prdownloads. sourceforge. net/ flex/ flex- 2. 5. 35. tar. bz2
MD5 sum: 10714e50cea54dc7a227e3eddcd44d57

• Gawk (3.1.8) - 1,938 KB:
Home page: http:// www. gnu. org/ software/ gawk/
Download: http:// ftp. gnu. org/ gnu/ gawk/ gawk- 3. 1. 8. tar. bz2
MD5 sum: 52b41c6c4418b3226dfb8f82076193bb

• GCC (4.5.2) - 64,774 KB:
Home page: http:// gcc. gnu. org/
Download: http:// ftp. gnu. org/ gnu/ gcc/ gcc- 4. 5. 2/ gcc- 4. 5. 2. tar. bz2
MD5 sum: d6559145853fbaaa0fd7556ed93bce9a

• GDBM (1.8.3) - 223 KB:
Home page: http:// www. gnu. org/ software/ gdbm/
Download: http:// ftp. gnu. org/ gnu/ gdbm/ gdbm- 1. 8. 3. tar. gz
MD5 sum: 1d1b1d5c0245b1c00aff92da751e9aa1

• Gettext (0.18.1.1) - 14,785 KB:
Home page: http:// www. gnu. org/ software/ gettext/
Download: http:// ftp. gnu. org/ gnu/ gettext/ gettext- 0. 18. 1. 1. tar. gz
MD5 sum: 3dd55b952826d2b32f51308f2f91aa89

• Glibc (2.13) - 15,357 KB:
Home page: http:// www. gnu. org/ software/ libc/
Download: http:// ftp. gnu. org/ gnu/ glibc/ glibc- 2. 13. tar. bz2
MD5 sum: 38808215a7c40aa0bb47a5e6d3d12475

• GMP (5.0.1) - 1,959 KB:
Home page: http:// www. gnu. org/ software/ gmp/
Download: http:// ftp. gnu. org/ gnu/ gmp/ gmp- 5. 0. 1. tar. bz2
MD5 sum: 6bac6df75c192a13419dfd71d19240a7

• Grep (2.7) - 1,466 KB:
Home page: http:// www. gnu. org/ software/ grep/
Download: http:// ftp. gnu. org/ gnu/ grep/ grep- 2. 7. tar. gz
MD5 sum: e848f07e3e79aa7899345d17c7e4115e

• Groff (1.21) - 3,774 KB:
Home page: http:// www. gnu. org/ software/ groff/
Download: http:// ftp. gnu. org/ gnu/ groff/ groff- 1. 21. tar. gz
MD5 sum: 8b8cd29385b97616a0f0d96d0951c5bf

• GRUB (1.98) - 2,392 KB:
Home page: http:// www. gnu. org/ software/ grub/
Download: ftp:// alpha. gnu. org/ gnu/ grub/ grub- 1. 98. tar. gz
MD5 sum: c0bcf60e524739bb64e3a2d4e3732a59

http://www.gnu.org/software/findutils/
http://ftp.gnu.org/gnu/findutils/findutils-4.4.2.tar.gz
http://flex.sourceforge.net
http://prdownloads.sourceforge.net/flex/flex-2.5.35.tar.bz2
http://www.gnu.org/software/gawk/
http://ftp.gnu.org/gnu/gawk/gawk-3.1.8.tar.bz2
http://gcc.gnu.org/
http://ftp.gnu.org/gnu/gcc/gcc-4.5.2/gcc-4.5.2.tar.bz2
http://www.gnu.org/software/gdbm/
http://ftp.gnu.org/gnu/gdbm/gdbm-1.8.3.tar.gz
http://www.gnu.org/software/gettext/
http://ftp.gnu.org/gnu/gettext/gettext-0.18.1.1.tar.gz
http://www.gnu.org/software/libc/
http://ftp.gnu.org/gnu/glibc/glibc-2.13.tar.bz2
http://www.gnu.org/software/gmp/
http://ftp.gnu.org/gnu/gmp/gmp-5.0.1.tar.bz2
http://www.gnu.org/software/grep/
http://ftp.gnu.org/gnu/grep/grep-2.7.tar.gz
http://www.gnu.org/software/groff/
http://ftp.gnu.org/gnu/groff/groff-1.21.tar.gz
http://www.gnu.org/software/grub/
ftp://alpha.gnu.org/gnu/grub/grub-1.98.tar.gz

Linux From Scratch - Version 6.8

18

• Gzip (1.4) - 886 KB:
Home page: http:// www. gnu. org/ software/ gzip/
Download: http:// ftp. gnu. org/ gnu/ gzip/ gzip- 1. 4. tar. gz
MD5 sum: e381b8506210c794278f5527cba0e765

• Iana-Etc (2.30) - 201 KB:
Home page: http:// freshmeat. net/ projects/ iana- etc/
Download: http:// anduin. linuxfromscratch. org/ sources/ LFS/ lfs- packages/ conglomeration// iana- etc/ iana- etc- 2. 30.
tar. bz2
MD5 sum: 3ba3afb1d1b261383d247f46cb135ee8

• Inetutils (1.8) - 1,810 KB:
Home page: http:// www. gnu. org/ software/ inetutils/
Download: http:// ftp. gnu. org/ gnu/ inetutils/ inetutils- 1. 8. tar. gz
MD5 sum: ad8fdcdf1797b9ca258264a6b04e48fd

• IPRoute2 (2.6.37) - 380 KB:
Home page: http:// www. linuxfoundation. org/ collaborate/ workgroups/ networking/ iproute2
Download: http:// devresources. linuxfoundation. org/ dev/ iproute2/ download/ iproute2- 2. 6. 37. tar. bz2
MD5 sum: 9774ff9d74ebd301bf56bd8d74473786

• Kbd (1.15.2) - 1,520 KB:
Download: http:// www. kernel. org/ pub/ linux/ utils/ kbd/ kbd- 1. 15. 2. tar. gz
MD5 sum: 77d0b51454522bc6c170bbdc6e31202a

• Less (436) - 297 KB:
Home page: http:// www. greenwoodsoftware. com/ less/
Download: http:// www. greenwoodsoftware. com/ less/ less- 436. tar. gz
MD5 sum: 817bf051953ad2dea825a1cdf460caa4

• LFS-Bootscripts (20100627) - 43 KB:
Download: http:// www. linuxfromscratch. org/ lfs/ downloads/ 6. 8/ lfs- bootscripts- 20100627. tar. bz2
MD5 sum: 8260bdb271caa3b538f8e95f65998864

• Libtool (2.4) - 2,520 KB:
Home page: http:// www. gnu. org/ software/ libtool/
Download: http:// ftp. gnu. org/ gnu/ libtool/ libtool- 2. 4. tar. gz
MD5 sum: b32b04148ecdd7344abc6fe8bd1bb021

• Linux (2.6.37) - 71,854 KB:
Home page: http:// www. kernel. org/
Download: http:// www. kernel. org/ pub/ linux/ kernel/ v2. 6/ linux- 2. 6. 37. tar. bz2
MD5 sum: c8ee37b4fdccdb651e0603d35350b434

Note
The Linux kernel is updated relatively often, many times due to discoveries of security vulnerabilities.
The latest available 2.6.37.x kernel version should be used, unless the errata page says otherwise.
For users with limited speed or expensive bandwidth who wish to update the Linux kernel, a baseline
version of the package and patches can be downloaded separately. This may save some time or cost for a
subsequent patch level upgrade within a minor release.

http://www.gnu.org/software/gzip/
http://ftp.gnu.org/gnu/gzip/gzip-1.4.tar.gz
http://freshmeat.net/projects/iana-etc/
http://anduin.linuxfromscratch.org/sources/LFS/lfs-packages/conglomeration//iana-etc/iana-etc-2.30.tar.bz2
http://anduin.linuxfromscratch.org/sources/LFS/lfs-packages/conglomeration//iana-etc/iana-etc-2.30.tar.bz2
http://www.gnu.org/software/inetutils/
http://ftp.gnu.org/gnu/inetutils/inetutils-1.8.tar.gz
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://devresources.linuxfoundation.org/dev/iproute2/download/iproute2-2.6.37.tar.bz2
http://www.kernel.org/pub/linux/utils/kbd/kbd-1.15.2.tar.gz
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/less-436.tar.gz
http://www.linuxfromscratch.org/lfs/downloads/6.8/lfs-bootscripts-20100627.tar.bz2
http://www.gnu.org/software/libtool/
http://ftp.gnu.org/gnu/libtool/libtool-2.4.tar.gz
http://www.kernel.org/
http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.37.tar.bz2

Linux From Scratch - Version 6.8

19

• M4 (1.4.15) - 1,099 KB:
Home page: http:// www. gnu. org/ software/ m4/
Download: http:// ftp. gnu. org/ gnu/ m4/ m4- 1. 4. 15. tar. bz2
MD5 sum: c7c32540bc3842d5550f88d47ef551d8

• Make (3.82) - 1,213 KB:
Home page: http:// www. gnu. org/ software/ make/
Download: http:// ftp. gnu. org/ gnu/ make/ make- 3. 82. tar. bz2
MD5 sum: 1a11100f3c63fcf5753818e59d63088f

• Man-DB (2.5.9) - 2,312 KB:
Home page: http:// www. nongnu. org/ man- db/
Download: http:// download. savannah. gnu. org/ releases/ man- db/ man- db- 2. 5. 9. tar. gz
MD5 sum: 9841394f5c5fe7e2dd2e0c5fb4766d0f

• Man-pages (3.32) - 1,108 KB:
Home page: http:// www. kernel. org/ doc/ man- pages/
Download: http:// www. kernel. org/ pub/ linux/ docs/ manpages/ man- pages- 3. 32. tar. bz2
MD5 sum: 1278c5289660e42a597fefd30d9bdcf0

• Module-Init-Tools (3.12) - 917 KB:
Home page: https:// modules. wiki. kernel. org/ index. php/ Module_ init_ tools_ 3_ 12
Download: http:// www. kernel. org/ pub/ linux/ utils/ kernel/ module- init- tools/ module- init- tools- 3. 12. tar. bz2
MD5 sum: 8b2257ce9abef74c4a44d825d23140f3

• MPC (0.8.2) - 536 KB:
Home page: http:// www. multiprecision. org/
Download: http:// www. multiprecision. org/ mpc/ download/ mpc- 0. 8. 2. tar. gz
MD5 sum: e98267ebd5648a39f881d66797122fb6

• MPFR (3.0.0) - 1,112 KB:
Home page: http:// www. mpfr. org/
Download: http:// www. mpfr. org/ mpfr- 3. 0. 0/ mpfr- 3. 0. 0. tar. bz2
MD5 sum: f45bac3584922c8004a10060ab1a8f9f

• Ncurses (5.7) - 2,388 KB:
Home page: http:// www. gnu. org/ software/ ncurses/
Download: ftp:// ftp. gnu. org/ gnu/ ncurses/ ncurses- 5. 7. tar. gz
MD5 sum: cce05daf61a64501ef6cd8da1f727ec6

• Patch (2.6.1) - 248 KB:
Home page: http:// savannah. gnu. org/ projects/ patch/
Download: http:// ftp. gnu. org/ gnu/ patch/ patch- 2. 6. 1. tar. bz2
MD5 sum: 0818d1763ae0c4281bcdc63cdac0b2c0

• Perl (5.12.3) - 11,759 KB:
Home page: http:// www. perl. org/
Download: http:// www. cpan. org/ src/ 5. 0/ perl- 5. 12. 3. tar. bz2
MD5 sum: 72f3f7e1c700e79bbf9d9279ca5b42d9

http://www.gnu.org/software/m4/
http://ftp.gnu.org/gnu/m4/m4-1.4.15.tar.bz2
http://www.gnu.org/software/make/
http://ftp.gnu.org/gnu/make/make-3.82.tar.bz2
http://www.nongnu.org/man-db/
http://download.savannah.gnu.org/releases/man-db/man-db-2.5.9.tar.gz
http://www.kernel.org/doc/man-pages/
http://www.kernel.org/pub/linux/docs/manpages/man-pages-3.32.tar.bz2
https://modules.wiki.kernel.org/index.php/Module_init_tools_3_12
http://www.kernel.org/pub/linux/utils/kernel/module-init-tools/module-init-tools-3.12.tar.bz2
http://www.multiprecision.org/
http://www.multiprecision.org/mpc/download/mpc-0.8.2.tar.gz
http://www.mpfr.org/
http://www.mpfr.org/mpfr-3.0.0/mpfr-3.0.0.tar.bz2
http://www.gnu.org/software/ncurses/
ftp://ftp.gnu.org/gnu/ncurses/ncurses-5.7.tar.gz
http://savannah.gnu.org/projects/patch/
http://ftp.gnu.org/gnu/patch/patch-2.6.1.tar.bz2
http://www.perl.org/
http://www.cpan.org/src/5.0/perl-5.12.3.tar.bz2

Linux From Scratch - Version 6.8

20

• Pkg-config (0.25) - 966 KB:
Home page: http:// pkg- config. freedesktop. org/
Download: http:// pkgconfig. freedesktop. org/ releases/ pkg- config- 0. 25. tar. gz
MD5 sum: a3270bab3f4b69b7dc6dbdacbcae9745

• Procps (3.2.8) - 279 KB:
Home page: http:// procps. sourceforge. net/
Download: http:// procps. sourceforge. net/ procps- 3. 2. 8. tar. gz
MD5 sum: 9532714b6846013ca9898984ba4cd7e0

• Psmisc (22.13) - 373 KB:
Home page: http:// psmisc. sourceforge. net/
Download: http:// prdownloads. sourceforge. net/ psmisc/ psmisc- 22. 13. tar. gz
MD5 sum: e2c339e6b65b730042084023784a729e

• Readline (6.2) - 2,225 KB:
Home page: http:// cnswww. cns. cwru. edu/ php/ chet/ readline/ rltop. html
Download: http:// ftp. gnu. org/ gnu/ readline/ readline- 6. 2. tar. gz
MD5 sum: 67948acb2ca081f23359d0256e9a271c

• Sed (4.2.1) - 878 KB:
Home page: http:// www. gnu. org/ software/ sed/
Download: http:// ftp. gnu. org/ gnu/ sed/ sed- 4. 2. 1. tar. bz2
MD5 sum: 7d310fbd76e01a01115075c1fd3f455a

• Shadow (4.1.4.3) - 1,762 KB:
Home page: http:// pkg- shadow. alioth. debian. org/
Download: ftp:// pkg- shadow. alioth. debian. org/ pub/ pkg- shadow/ shadow- 4. 1. 4. 3. tar. bz2
MD5 sum: b8608d8294ac88974f27b20f991c0e79

• Sysklogd (1.5) - 85 KB:
Home page: http:// www. infodrom. org/ projects/ sysklogd/
Download: http:// www. infodrom. org/ projects/ sysklogd/ download/ sysklogd- 1. 5. tar. gz
MD5 sum: e053094e8103165f98ddafe828f6ae4b

• Sysvinit (2.88dsf) - 108 KB:
Home page: http:// savannah. nongnu. org/ projects/ sysvinit
Download: http:// download. savannah. gnu. org/ releases/ sysvinit/ sysvinit- 2. 88dsf. tar. bz2
MD5 sum: 6eda8a97b86e0a6f59dabbf25202aa6f

• Tar (1.25) - 2,273 KB:
Home page: http:// www. gnu. org/ software/ tar/
Download: http:// ftp. gnu. org/ gnu/ tar/ tar- 1. 25. tar. bz2
MD5 sum: 6e497f861c77bbba2f7da4e10270995b

• Tcl (8.5.9) - 4,365 KB:
Home page: http:// tcl. sourceforge. net/
Download: http:// prdownloads. sourceforge. net/ tcl/ tcl8. 5. 9- src. tar. gz
MD5 sum: 8512d8db3233041dd68a81476906012a

http://pkg-config.freedesktop.org/
http://pkgconfig.freedesktop.org/releases/pkg-config-0.25.tar.gz
http://procps.sourceforge.net/
http://procps.sourceforge.net/procps-3.2.8.tar.gz
http://psmisc.sourceforge.net/
http://prdownloads.sourceforge.net/psmisc/psmisc-22.13.tar.gz
http://cnswww.cns.cwru.edu/php/chet/readline/rltop.html
http://ftp.gnu.org/gnu/readline/readline-6.2.tar.gz
http://www.gnu.org/software/sed/
http://ftp.gnu.org/gnu/sed/sed-4.2.1.tar.bz2
http://pkg-shadow.alioth.debian.org/
ftp://pkg-shadow.alioth.debian.org/pub/pkg-shadow/shadow-4.1.4.3.tar.bz2
http://www.infodrom.org/projects/sysklogd/
http://www.infodrom.org/projects/sysklogd/download/sysklogd-1.5.tar.gz
http://savannah.nongnu.org/projects/sysvinit
http://download.savannah.gnu.org/releases/sysvinit/sysvinit-2.88dsf.tar.bz2
http://www.gnu.org/software/tar/
http://ftp.gnu.org/gnu/tar/tar-1.25.tar.bz2
http://tcl.sourceforge.net/
http://prdownloads.sourceforge.net/tcl/tcl8.5.9-src.tar.gz

Linux From Scratch - Version 6.8

21

• Texinfo (4.13a) - 2,687 KB:
Home page: http:// www. gnu. org/ software/ texinfo/
Download: http:// ftp. gnu. org/ gnu/ texinfo/ texinfo- 4. 13a. tar. gz
MD5 sum: 71ba711519209b5fb583fed2b3d86fcb

• Udev (166) - 573 KB:
Home page: http:// www. kernel. org/ pub/ linux/ utils/ kernel/ hotplug/ udev. html
Download: http:// www. kernel. org/ pub/ linux/ utils/ kernel/ hotplug/ udev- 166. tar. bz2
MD5 sum: 4db27d73fdbe94f47fd89fdd105c2dfb

• Udev Test Tarball (166) - 150 KB:
Download: http:// anduin. linuxfromscratch. org/ sources/ other/ udev- 166- testfiles. tar. bz2
MD5 sum: 64ada14e464dee3388787e3aebf2ac34

• Udev Configuration Tarball - 7 KB:
Download: http:// www. linuxfromscratch. org/ lfs/ downloads/ 6. 8/ udev- config- 20100128. tar. bz2
MD5 sum: 32de4eb504b2ad67b43cb4fe16da92e2

• Util-linux (2.19) - 4,288 KB:
Home page: http:// userweb. kernel. org/ ~kzak/ util- linux/
Download: http:// www. kernel. org/ pub/ linux/ utils/ util- linux/ v2. 19/ util- linux- 2. 19. tar. bz2
MD5 sum: 590ca71aad0b254e2631d84401f28255

• Vim (7.3) - 8,675 KB:
Home page: http:// www. vim. org
Download: ftp:// ftp. vim. org/ pub/ vim/ unix/ vim- 7. 3. tar. bz2
MD5 sum: 5b9510a17074e2b37d8bb38ae09edbf2

• Xz Utils (5.0.1) - 982 KB:
Home page: http:// tukaani. org/ xz
Download: http:// tukaani. org/ xz/ xz- 5. 0. 1. tar. bz2
MD5 sum: cb6c7a58cec4d663a395c54d186ca0c6

• Zlib (1.2.5) - 532 KB:
Home page: http:// www. zlib. net/
Download: http:// www. zlib. net/ zlib- 1. 2. 5. tar. bz2
MD5 sum: be1e89810e66150f5b0327984d8625a0

Total size of these packages: about 286 MB

3.3. Needed Patches
In addition to the packages, several patches are also required. These patches correct any mistakes in the packages that
should be fixed by the maintainer. The patches also make small modifications to make the packages easier to work
with. The following patches will be needed to build an LFS system:

• Bzip2 Documentation Patch - 1.6 KB:
Download: http:// www. linuxfromscratch. org/ patches/ lfs/ 6. 8/ bzip2- 1. 0. 6- install_ docs- 1. patch
MD5 sum: 6a5ac7e89b791aae556de0f745916f7f

• Coreutils Internationalization Fixes Patch - 120 KB:
Download: http:// www. linuxfromscratch. org/ patches/ lfs/ 6. 8/ coreutils- 8. 10- i18n- 1. patch
MD5 sum: 28895e1112835ca04119158d1883a6d5

http://www.gnu.org/software/texinfo/
http://ftp.gnu.org/gnu/texinfo/texinfo-4.13a.tar.gz
http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html
http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev-166.tar.bz2
http://anduin.linuxfromscratch.org/sources/other/udev-166-testfiles.tar.bz2
http://www.linuxfromscratch.org/lfs/downloads/6.8/udev-config-20100128.tar.bz2
http://userweb.kernel.org/~kzak/util-linux/
http://www.kernel.org/pub/linux/utils/util-linux/v2.19/util-linux-2.19.tar.bz2
http://www.vim.org
ftp://ftp.vim.org/pub/vim/unix/vim-7.3.tar.bz2
http://tukaani.org/xz
http://tukaani.org/xz/xz-5.0.1.tar.bz2
http://www.zlib.net/
http://www.zlib.net/zlib-1.2.5.tar.bz2
http://www.linuxfromscratch.org/patches/lfs/6.8/bzip2-1.0.6-install_docs-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.8/coreutils-8.10-i18n-1.patch

Linux From Scratch - Version 6.8

22

• Coreutils Uname Patch - 1.6 KB:
Download: http:// www. linuxfromscratch. org/ patches/ lfs/ 6. 8/ coreutils- 8. 10- uname- 1. patch
MD5 sum: 500481b75892e5c07e19e9953a690e54

• Dejagnu Consolidated Patch - 6 KB:
Download: http:// www. linuxfromscratch. org/ patches/ lfs/ 6. 8/ dejagnu- 1. 4. 4- consolidated- 1. patch
MD5 sum: b9949a8abcc210d1dc9cdda06821c199

• Flex GCC-4.4.x Patch - 1 KB:
Download: http:// www. linuxfromscratch. org/ patches/ lfs/ 6. 8/ flex- 2. 5. 35- gcc44- 1. patch
MD5 sum: ad9109820534278c6dd0898178c0788f

• GCC Startfiles Fix Patch - 1.5 KB:
Download: http:// www. linuxfromscratch. org/ patches/ lfs/ 6. 8/ gcc- 4. 5. 2- startfiles_ fix- 1. patch
MD5 sum: 799ef1971350d2e3c794f2123f247cc6

• Glibc GCC Build Fix Patch - 2.5 KB:
Download: http:// www. linuxfromscratch. org/ patches/ lfs/ 6. 8/ glibc- 2. 13- gcc_ fix- 1. patch
MD5 sum: d1f28cb98acb9417fe52596908bbb9fd

• Kbd Backspace/Delete Fix Patch - 12 KB:
Download: http:// www. linuxfromscratch. org/ patches/ lfs/ 6. 8/ kbd- 1. 15. 2- backspace- 1. patch
MD5 sum: f75cca16a38da6caa7d52151f7136895

• Patch Testsuite Fix Patch - 1 KB:
Download: http:// www. linuxfromscratch. org/ patches/ lfs/ 6. 8/ patch- 2. 6. 1- test_ fix- 1. patch
MD5 sum: c51e1a95bfc5310635d05081472c3534

• Perl Libc Patch - 1 KB:
Download: http:// www. linuxfromscratch. org/ patches/ lfs/ 6. 8/ perl- 5. 12. 3- libc- 1. patch
MD5 sum: 800dfd3c9618731ee5cf57f77a7942b4

• Procps HZ Errors Patch - 2.3 KB:
Download: http:// www. linuxfromscratch. org/ patches/ lfs/ 6. 8/ procps- 3. 2. 8- fix_ HZ_ errors- 1. patch
MD5 sum: 2ea4c8e9a2c2a5a291ec63c92d7c6e3b

• Procps Watch Patch - 3.5 KB:
Download: http:// www. linuxfromscratch. org/ patches/ lfs/ 6. 8/ procps- 3. 2. 8- watch_ unicode- 1. patch
MD5 sum: cd1a757e532d93662a7ed71da80e6b58

Total size of these patches: about 154 KB

In addition to the above required patches, there exist a number of optional patches created by the LFS community.
These optional patches solve minor problems or enable functionality that is not enabled by default. Feel free to peruse
the patches database located at http:// www. linuxfromscratch. org/ patches/ downloads/ and acquire any additional
patches to suit your system needs.

http://www.linuxfromscratch.org/patches/lfs/6.8/coreutils-8.10-uname-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.8/dejagnu-1.4.4-consolidated-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.8/flex-2.5.35-gcc44-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.8/gcc-4.5.2-startfiles_fix-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.8/glibc-2.13-gcc_fix-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.8/kbd-1.15.2-backspace-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.8/patch-2.6.1-test_fix-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.8/perl-5.12.3-libc-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.8/procps-3.2.8-fix_HZ_errors-1.patch
http://www.linuxfromscratch.org/patches/lfs/6.8/procps-3.2.8-watch_unicode-1.patch
http://www.linuxfromscratch.org/patches/downloads/

Linux From Scratch - Version 6.8

23

Chapter 4. Final Preparations

4.1. About $LFS
Throughout this book, the environment variable LFS will be used. It is paramount that this variable is always defined.
It should be set to the mount point chosen for the LFS partition. Check that the LFS variable is set up properly with:

echo $LFS

Make sure the output shows the path to the LFS partition's mount point, which is / mnt/ lfs if the provided example
was followed. If the output is incorrect, the variable can be set with:

export LFS=/mnt/lfs

Having this variable set is beneficial in that commands such as mkdir $LFS/tools can be typed literally. The shell will
automatically replace “$LFS” with “/mnt/lfs” (or whatever the variable was set to) when it processes the command
line.

Do not forget to check that $LFS is set whenever you leave and reenter the current working environment (as when
doing a su to root or another user).

4.2. Creating the $LFS/tools Directory
All programs compiled in Chapter 5 will be installed under $LFS/ tools to keep them separate from the programs
compiled in Chapter 6. The programs compiled here are temporary tools and will not be a part of the final LFS system.
By keeping these programs in a separate directory, they can easily be discarded later after their use. This also prevents
these programs from ending up in the host production directories (easy to do by accident in Chapter 5).

Create the required directory by running the following as root:

mkdir -v $LFS/tools

The next step is to create a / tools symlink on the host system. This will point to the newly-created directory on
the LFS partition. Run this command as root as well:

ln -sv $LFS/tools /

Note

The above command is correct. The ln command has a few syntactic variations, so be sure to check info
coreutils ln and ln(1) before reporting what you may think is an error.

The created symlink enables the toolchain to be compiled so that it always refers to / tools, meaning that the
compiler, assembler, and linker will work both in Chapter 5 (when we are still using some tools from the host) and
in the next (when we are “chrooted” to the LFS partition).

Linux From Scratch - Version 6.8

24

4.3. Adding the LFS User
When logged in as user root, making a single mistake can damage or destroy a system. Therefore, we recommend
building the packages in this chapter as an unprivileged user. You could use your own user name, but to make it easier
to set up a clean working environment, create a new user called lfs as a member of a new group (also named lfs)
and use this user during the installation process. As root, issue the following commands to add the new user:

groupadd lfs
useradd -s /bin/bash -g lfs -m -k /dev/null lfs

The meaning of the command line options:

-s /bin/bash
This makes bash the default shell for user lfs.

-g lfs
This option adds user lfs to group lfs.

-m
This creates a home directory for lfs.

-k /dev/null
This parameter prevents possible copying of files from a skeleton directory (default is / etc/ skel) by changing
the input location to the special null device.

lfs
This is the actual name for the created group and user.

To log in as lfs (as opposed to switching to user lfs when logged in as root, which does not require the lfs
user to have a password), give lfs a password:

passwd lfs

Grant lfs full access to $LFS/ tools by making lfs the directory owner:

chown -v lfs $LFS/tools

If a separate working directory was created as suggested, give user lfs ownership of this directory:

chown -v lfs $LFS/sources

Next, login as user lfs. This can be done via a virtual console, through a display manager, or with the following
substitute user command:

su - lfs

The “-” instructs su to start a login shell as opposed to a non-login shell. The difference between these two types of
shells can be found in detail in bash(1) and info bash.

4.4. Setting Up the Environment
Set up a good working environment by creating two new startup files for the bash shell. While logged in as user lfs,
issue the following command to create a new . bash_ profile:

cat > ~/.bash_profile << "EOF"
exec env -i HOME=$HOME TERM=$TERM PS1='\u:\w\$ ' /bin/bash
EOF

Linux From Scratch - Version 6.8

25

When logged on as user lfs, the initial shell is usually a login shell which reads the / etc/ profile of the
host (probably containing some settings and environment variables) and then . bash_ profile. The exec env
-i.../bin/bash command in the . bash_ profile file replaces the running shell with a new one with a completely
empty environment, except for the HOME, TERM, and PS1 variables. This ensures that no unwanted and potentially
hazardous environment variables from the host system leak into the build environment. The technique used here
achieves the goal of ensuring a clean environment.

The new instance of the shell is a non-login shell, which does not read the / etc/ profile or . bash_ profile
files, but rather reads the . bashrc file instead. Create the . bashrc file now:

cat > ~/.bashrc << "EOF"
set +h
umask 022
LFS=/mnt/lfs
LC_ALL=POSIX
LFS_TGT=$(uname -m)-lfs-linux-gnu
PATH=/tools/bin:/bin:/usr/bin
export LFS LC_ALL LFS_TGT PATH
EOF

The set +h command turns off bash's hash function. Hashing is ordinarily a useful feature—bash uses a hash table
to remember the full path of executable files to avoid searching the PATH time and again to find the same executable.
However, the new tools should be used as soon as they are installed. By switching off the hash function, the shell
will always search the PATH when a program is to be run. As such, the shell will find the newly compiled tools
in $LFS/ tools as soon as they are available without remembering a previous version of the same program in a
different location.

Setting the user file-creation mask (umask) to 022 ensures that newly created files and directories are only writable by
their owner, but are readable and executable by anyone (assuming default modes are used by the open(2) system
call, new files will end up with permission mode 644 and directories with mode 755).

The LFS variable should be set to the chosen mount point.

The LC_ ALL variable controls the localization of certain programs, making their messages follow the conventions of
a specified country. If the host system uses a version of Glibc older than 2.2.4, having LC_ ALL set to something other
than “POSIX” or “C” (during this chapter) may cause issues if you exit the chroot environment and wish to return
later. Setting LC_ ALL to “POSIX” or “C” (the two are equivalent) ensures that everything will work as expected
in the chroot environment.

The LFS_ TGT variable sets a non-default, but compatible machine description for use when building our cross
compiler and linker and when cross compiling our temporary toolchain. More information is contained in Section 5.2,
“Toolchain Technical Notes”.

By putting / tools/ bin ahead of the standard PATH, all the programs installed in Chapter 5 are picked up by the
shell immediately after their installation. This, combined with turning off hashing, limits the risk that old programs
are used from the host when the same programs are available in the chapter 5 environment.

Finally, to have the environment fully prepared for building the temporary tools, source the just-created user profile:

source ~/.bash_profile

Linux From Scratch - Version 6.8

26

4.5. About SBUs
Many people would like to know beforehand approximately how long it takes to compile and install each package.
Because Linux From Scratch can be built on many different systems, it is impossible to provide accurate time
estimates. The biggest package (Glibc) will take approximately 20 minutes on the fastest systems, but could take
up to three days on slower systems! Instead of providing actual times, the Standard Build Unit (SBU) measure will
be used instead.

The SBU measure works as follows. The first package to be compiled from this book is Binutils in Chapter 5. The
time it takes to compile this package is what will be referred to as the Standard Build Unit or SBU. All other compile
times will be expressed relative to this time.

For example, consider a package whose compilation time is 4.5 SBUs. This means that if a system took 10 minutes
to compile and install the first pass of Binutils, it will take approximately 45 minutes to build this example package.
Fortunately, most build times are shorter than the one for Binutils.

In general, SBUs are not entirely accurate because they depend on many factors, including the host system's version
of GCC. They are provided here to give an estimate of how long it might take to install a package, but the numbers
can vary by as much as dozens of minutes in some cases.

To view actual timings for a number of specific machines, we recommend The LinuxFromScratch SBU Home Page
at http:// www. linuxfromscratch. org/ ~sbu/.

Note

For many modern systems with multiple processors (or cores) the compilation time for a package can be
reduced by performing a "parallel make" by either setting an environment variable or telling the make
program how many processors are available. For instance, a Core2Duo can support two simultaneous
processes with:

export MAKEFLAGS='-j 2'

or just building with:

make -j2

When multiple processors are used in this way, the SBU units in the book will vary even more than they
normally would. Analyzing the output of the build process will also be more difficult because the lines of
different processes will be interleaved. If you run into a problem with a build step, revert back to a single
processor build to properly analyze the error messages.

4.6. About the Test Suites
Most packages provide a test suite. Running the test suite for a newly built package is a good idea because it can
provide a “sanity check” indicating that everything compiled correctly. A test suite that passes its set of checks usually
proves that the package is functioning as the developer intended. It does not, however, guarantee that the package
is totally bug free.

Some test suites are more important than others. For example, the test suites for the core toolchain packages—GCC,
Binutils, and Glibc—are of the utmost importance due to their central role in a properly functioning system. The test
suites for GCC and Glibc can take a very long time to complete, especially on slower hardware, but are strongly
recommended.

http://www.linuxfromscratch.org/~sbu/

Linux From Scratch - Version 6.8

27

Note

Experience has shown that there is little to be gained from running the test suites in Chapter 5. There can
be no escaping the fact that the host system always exerts some influence on the tests in that chapter, often
causing inexplicable failures. Because the tools built in Chapter 5 are temporary and eventually discarded,
we do not recommend running the test suites in Chapter 5 for the average reader. The instructions for
running those test suites are provided for the benefit of testers and developers, but they are strictly optional.

A common issue with running the test suites for Binutils and GCC is running out of pseudo terminals (PTYs). This
can result in a high number of failing tests. This may happen for several reasons, but the most likely cause is that
the host system does not have the devpts file system set up correctly. This issue is discussed in greater detail at
http:// www. linuxfromscratch. org// lfs/ faq. html#no- ptys.

Sometimes package test suites will fail, but for reasons which the developers are aware of and have deemed
non-critical. Consult the logs located at http:// www. linuxfromscratch. org/ lfs/ build- logs/ 6. 8/ to verify whether or not
these failures are expected. This site is valid for all tests throughout this book.

http://www.linuxfromscratch.org//lfs/faq.html#no-ptys
http://www.linuxfromscratch.org/lfs/build-logs/6.8/

Linux From Scratch - Version 6.8

28

Chapter 5. Constructing a Temporary System

5.1. Introduction
This chapter shows how to build a minimal Linux system. This system will contain just enough tools to start
constructing the final LFS system in Chapter 6 and allow a working environment with more user convenience than
a minimum environment would.

There are two steps in building this minimal system. The first step is to build a new and host-independent toolchain
(compiler, assembler, linker, libraries, and a few useful utilities). The second step uses this toolchain to build the
other essential tools.

The files compiled in this chapter will be installed under the $LFS/ tools directory to keep them separate from the
files installed in the next chapter and the host production directories. Since the packages compiled here are temporary,
we do not want them to pollute the soon-to-be LFS system.

5.2. Toolchain Technical Notes
This section explains some of the rationale and technical details behind the overall build method. It is not essential to
immediately understand everything in this section. Most of this information will be clearer after performing an actual
build. This section can be referred to at any time during the process.

The overall goal of Chapter 5 is to produce a temporary area that contains a known-good set of tools that can be
isolated from the host system. By using chroot, the commands in the remaining chapters will be contained within
that environment, ensuring a clean, trouble-free build of the target LFS system. The build process has been designed
to minimize the risks for new readers and to provide the most educational value at the same time.

Important

Before continuing, be aware of the name of the working platform, often referred to as the target triplet. A
simple way to determine the name of the target triplet is to run the config.guess script that comes with the
source for many packages. Unpack the Binutils sources and run the script: ./config.guess and note
the output. For example, for a modern 32-bit Intel processor the output will likely be i686-pc-linux-gnu.

Also be aware of the name of the platform's dynamic linker, often referred to as the dynamic loader (not to
be confused with the standard linker ld that is part of Binutils). The dynamic linker provided by Glibc finds
and loads the shared libraries needed by a program, prepares the program to run, and then runs it. The name
of the dynamic linker for a 32-bit Intel machine will be ld- linux. so. 2. A sure-fire way to determine
the name of the dynamic linker is to inspect a random binary from the host system by running: readelf
-l <name of binary> | grep interpreter and noting the output. The authoritative reference
covering all platforms is in the shlib- versions file in the root of the Glibc source tree.

Some key technical points of how the Chapter 5 build method works:

• Slightly adjusting the name of the working platform, by changing the "vendor" field target triplet by way of
the LFS_ TGT variable, ensures that the first build of Binutils and GCC produces a compatible cross-linker and
cross-compiler. Instead of producing binaries for another architecture, the cross-linker and cross-compiler will
produce binaries compatible with the current hardware.

Linux From Scratch - Version 6.8

29

• The temporary libraries are cross-compiled. Because a cross-compiler by its nature cannot rely on anything from
its host system, this method removes potential contamination of the target system by lessening the chance of
headers or libraries from the host being incorporated into the new tools. Cross-compilation also allows for the
possibility of building both 32-bit and 64-bit libraries on 64-bit capable hardware.

• Careful manipulation of gcc's specs file tells the compiler which target dynamic linker will be used

Binutils is installed first because the configure runs of both GCC and Glibc perform various feature tests on the
assembler and linker to determine which software features to enable or disable. This is more important than one might
first realize. An incorrectly configured GCC or Glibc can result in a subtly broken toolchain, where the impact of
such breakage might not show up until near the end of the build of an entire distribution. A test suite failure will
usually highlight this error before too much additional work is performed.

Binutils installs its assembler and linker in two locations, / tools/ bin and / tools/ $LFS_ TGT/ bin. The tools
in one location are hard linked to the other. An important facet of the linker is its library search order. Detailed
information can be obtained from ld by passing it the - - verbose flag. For example, an ld --verbose | grep
SEARCH will illustrate the current search paths and their order. It shows which files are linked by ld by compiling a
dummy program and passing the - - verbose switch to the linker. For example, gcc dummy.c -Wl,--verbose
2>&1 | grep succeeded will show all the files successfully opened during the linking.

The next package installed is GCC. An example of what can be seen during its run of configure is:

checking what assembler to use... /tools/i686-lfs-linux-gnu/bin/as
checking what linker to use... /tools/i686-lfs-linux-gnu/bin/ld

This is important for the reasons mentioned above. It also demonstrates that GCC's configure script does not search
the PATH directories to find which tools to use. However, during the actual operation of gcc itself, the same search
paths are not necessarily used. To find out which standard linker gcc will use, run: gcc -print-prog-name=ld.

Detailed information can be obtained from gcc by passing it the - v command line option while compiling a dummy
program. For example, gcc -v dummy.c will show detailed information about the preprocessor, compilation, and
assembly stages, including gcc's included search paths and their order.

The next package installed is Glibc. The most important considerations for building Glibc are the compiler, binary
tools, and kernel headers. The compiler is generally not an issue since Glibc will always use the compiler relating
to the - - host parameter passed to its configure script, e.g. in our case, i686-lfs-linux-gnu-gcc. The binary tools
and kernel headers can be a bit more complicated. Therefore, take no risks and use the available configure switches
to enforce the correct selections. After the run of configure, check the contents of the config. make file in the
glibc- build directory for all important details. Note the use of CC="i686- lfs- gnu- gcc" to control which
binary tools are used and the use of the - nostdinc and - isystem flags to control the compiler's include search
path. These items highlight an important aspect of the Glibc package—it is very self-sufficient in terms of its build
machinery and generally does not rely on toolchain defaults.

After the Glibc installation, change gcc's specs file to point to the new dynamic linker in / tools/ lib. This last
step is vital in ensuring that searching and linking take place only within the / tools prefix. A hard-wired path to a
dynamic linker is embedded into every Executable and Link Format (ELF)-shared executable. This can be inspected
by running: readelf -l <name of binary> | grep interpreter. Amending gcc's specs file ensures that
every program compiled from here through the end of this chapter will use the new dynamic linker in / tools/ lib.

For the second pass of GCC, its sources also need to be modified to tell GCC to use the new dynamic linker. Failure
to do so will result in the GCC programs themselves having the name of the dynamic linker from the host system's
/ lib directory embedded into them, which would defeat the goal of getting away from the host.

Linux From Scratch - Version 6.8

30

During the second pass of Binutils, we are able to utilize the - - with- lib- path configure switch to control ld's
library search path. From this point onwards, the core toolchain is self-contained and self-hosted. The remainder of
the Chapter 5 packages all build against the new Glibc in / tools.

Upon entering the chroot environment in Chapter 6, the first major package to be installed is Glibc, due to its
self-sufficient nature mentioned above. Once this Glibc is installed into / usr, we will perform a quick changeover
of the toolchain defaults, and then proceed in building the rest of the target LFS system.

5.3. General Compilation Instructions
When building packages there are several assumptions made within the instructions:

• Several of the packages are patched before compilation, but only when the patch is needed to circumvent a
problem. A patch is often needed in both this and the next chapter, but sometimes in only one or the other.
Therefore, do not be concerned if instructions for a downloaded patch seem to be missing. Warning messages
about offset or fuzz may also be encountered when applying a patch. Do not worry about these warnings, as the
patch was still successfully applied.

• During the compilation of most packages, there will be several warnings that scroll by on the screen. These
are normal and can safely be ignored. These warnings are as they appear—warnings about deprecated, but
not invalid, use of the C or C++ syntax. C standards change fairly often, and some packages still use the older
standard. This is not a problem, but does prompt the warning.

Important

After installing each package, delete its source and build directories, unless specifically instructed
otherwise. Deleting the sources prevents mis-configuration when the same package is reinstalled later.

• Check one last time that the LFS environment variable is set up properly:

echo $LFS

Make sure the output shows the path to the LFS partition's mount point, which is / mnt/ lfs, using our
example.

• Finally, two last important items must be emphasized:

Important

The build instructions assume that the bash shell is in use.

Important

Before issuing the build instructions for a package, the package should be unpacked as user lfs, and a
cd into the created directory should be performed.

Linux From Scratch - Version 6.8

31

To re-emphasize the build process:

1. Place all the sources and patches in a directory that will be accessible
 from the chroot envronment such as /mnt/lfs/sources/. Do not put
 sources in /mnt/lfs/tools/.
2. Change to the sources directory.
3. For each package:
 a. Using the tar program, extract the package to be built.
 b. Change to the directory created when the package was extracted.
 c. Follow the book's instructions for building the package.
 d. Change back to the sources directory.
 e. Delete the extracted source directory and any <package>-build
 directories that were created in the build process.

Linux From Scratch - Version 6.8

32

5.4. Binutils-2.21 - Pass 1
The Binutils package contains a linker, an assembler, and other tools for handling object files.

Approximate build time: 1 SBU
Required disk space: 248 MB

5.4.1. Installation of Cross Binutils

Note

Go back and re-read the notes in the previous section. Understanding the notes labeled important will save
you a lot of problems later.

It is important that Binutils be the first package compiled because both Glibc and GCC perform various tests on the
available linker and assembler to determine which of their own features to enable.

The Binutils documentation recommends building Binutils outside of the source directory in a dedicated build
directory:

mkdir -v ../binutils-build
cd ../binutils-build

Note

In order for the SBU values listed in the rest of the book to be of any use, measure the time it takes to build
this package from the configuration, up to and including the first install. To achieve this easily, wrap the
three commands in a time command like this: time { ./configure ... && make && make
install; }.

Note

The approximate build SBU values and required disk space in Chapter 5 does not include test suite data.

Now prepare Binutils for compilation:

../binutils-2.21/configure \
 --target=$LFS_TGT --prefix=/tools \
 --disable-nls --disable-werror

The meaning of the configure options:

--target=$LFS_TGT
Because the machine description in the LFS_ TGT variable is slightly different than the value returned by the
config.guess script, this switch will tell the configure script to adjust Binutil's build system for building a cross
linker.

--prefix=/tools
This tells the configure script to prepare to install the Binutils programs in the / tools directory.

--disable-nls
This disables internationalization as i18n is not needed for the temporary tools.

Linux From Scratch - Version 6.8

33

--disable-werror
This prevents the build from stopping in the event that there are warnings from the host's compiler.

Continue with compiling the package:

make

Compilation is now complete. Ordinarily we would now run the test suite, but at this early stage the test suite
framework (Tcl, Expect, and DejaGNU) is not yet in place. The benefits of running the tests at this point are minimal
since the programs from this first pass will soon be replaced by those from the second.

If building on x86_64, create a symlink to ensure the sanity of the toolchain:

case $(uname -m) in
 x86_64) mkdir -v /tools/lib && ln -sv lib /tools/lib64 ;;
esac

Install the package:

make install

Details on this package are located in Section 6.12.2, “Contents of Binutils.”

Linux From Scratch - Version 6.8

34

5.5. GCC-4.5.2 - Pass 1
The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

Approximate build time: 5.0 SBU
Required disk space: 809 MB

5.5.1. Installation of Cross GCC
GCC now requires the GMP, MPFR and MPC packages. As these packages may not be included in your host
distribution, they will be built with GCC. Unpack each package into the GCC source directory and rename the
resulting directories so the GCC build procedures will automatically use them:

tar -jxf ../mpfr-3.0.0.tar.bz2
mv -v mpfr-3.0.0 mpfr
tar -jxf ../gmp-5.0.1.tar.bz2
mv -v gmp-5.0.1 gmp
tar -zxf ../mpc-0.8.2.tar.gz
mv -v mpc-0.8.2 mpc

The GCC documentation recommends building GCC outside of the source directory in a dedicated build directory:

mkdir -v ../gcc-build
cd ../gcc-build

Prepare GCC for compilation:

../gcc-4.5.2/configure \
 --target=$LFS_TGT --prefix=/tools \
 --disable-nls --disable-shared --disable-multilib \
 --disable-decimal-float --disable-threads \
 --disable-libmudflap --disable-libssp \
 --disable-libgomp --enable-languages=c \
 --with-gmp-include=$(pwd)/gmp --with-gmp-lib=$(pwd)/gmp/.libs \
 --without-ppl --without-cloog

The meaning of the configure options:

--disable-shared
This switch forces GCC to link its internal libraries statically. We do this to avoid possible issues with the host
system.

--disable-decimal-float, --disable-threads, --disable-libmudflap,
--disable-libssp, --disable-libgomp

These switches disable support for the decimal floating point extension, threading, libmudflap, libssp and
libgomp respectively. These features will fail to compile when building a cross-compiler and are not necessary
for the task of cross-compiling the temporary libc.

--disable-multilib
On x86_64, LFS does not yet support a multilib configuration. This switch is harmless for x86.

--enable-languages=c
This option ensures that only the C compiler is built. This is the only language needed now.

Linux From Scratch - Version 6.8

35

--with-gmp-include=...
This option tells GCC where the GMP headers are located.

--with-gmp-lib=...
This option tells GCC where the GMP library is located.

--without-ppl, --without-cloog
These switches prevent GCC from building against the PPL and CLooG libraries which may be present on the
host system, but will not be available in the chroot environment.

Compile GCC by running:

make

Compilation is now complete. At this point, the test suite would normally be run, but, as mentioned before, the test
suite framework is not in place yet. The benefits of running the tests at this point are minimal since the programs
from this first pass will soon be replaced.

Install the package:

make install

Using - - disable- shared means that the libgcc_ eh. a file isn't created and installed. The Glibc package
depends on this library as it uses - lgcc_ eh within its build system. This dependency can be satisfied by creating a
symlink to libgcc. a, since that file will end up containing the objects normally contained in libgcc_ eh. a:

ln -vs libgcc.a `$LFS_TGT-gcc -print-libgcc-file-name | \
 sed 's/libgcc/&_eh/'`

Details on this package are located in Section 6.16.2, “Contents of GCC.”

Linux From Scratch - Version 6.8

36

5.6. Linux-2.6.37 API Headers
The Linux API Headers expose the kernel's API for use by Glibc.

Approximate build time: 0.1 SBU
Required disk space: 485 MB

5.6.1. Installation of Linux API Headers
The Linux kernel needs to expose an Application Programming Interface (API) for the system's C library (Glibc in
LFS) to use. This is done by way of sanitizing various C header files that are shipped in the Linux kernel source tarball.

Make sure there are no stale files and dependencies lying around from previous activity:

make mrproper

Now test and extract the user-visible kernel headers from the source. They are placed in an intermediate local directory
and copied to the needed location because the extraction process removes any existing files in the target directory.

make headers_check
make INSTALL_HDR_PATH=dest headers_install
cp -rv dest/include/* /tools/include

Details on this package are located in Section 6.7.2, “Contents of Linux API Headers.”

Linux From Scratch - Version 6.8

37

5.7. Glibc-2.13
The Glibc package contains the main C library. This library provides the basic routines for allocating memory,
searching directories, opening and closing files, reading and writing files, string handling, pattern matching,
arithmetic, and so on.

Approximate build time: 6.9 SBU
Required disk space: 371 MB

5.7.1. Installation of Glibc
Fix a bug that prevents Glibc from building with GCC-4.5.2:

patch -Np1 -i ../glibc-2.13-gcc_fix-1.patch

The Glibc documentation recommends building Glibc outside of the source directory in a dedicated build directory:

mkdir -v ../glibc-build
cd ../glibc-build

Because Glibc no longer supports i386, its developers say to use the compiler flag - march=i486 when building it
for x86 machines. There are several ways to accomplish that, but testing shows that the flag is best placed inside the
build variable “CFLAGS”. Instead of overriding completely what Glibc's internal build system uses for CFLAGS,
append the new flag to the existing contents of CFLAGS by making use of the special file configparms. The
-mtune=native flag is also necessary to reset a reasonable value for -mtune that is changed when setting -march.

case `uname -m` in
 i?86) echo "CFLAGS += -march=i486 -mtune=native" > configparms ;;
esac

Next, prepare Glibc for compilation:

../glibc-2.13/configure --prefix=/tools \
 --host=$LFS_TGT --build=$(../glibc-2.13/scripts/config.guess) \
 --disable-profile --enable-add-ons \
 --enable-kernel=2.6.22.5 --with-headers=/tools/include \
 libc_cv_forced_unwind=yes libc_cv_c_cleanup=yes

The meaning of the configure options:

--host=$LFS_TGT, --build=$(../glibc-2.13/scripts/config.guess)
The combined effect of these switches is that Glibc's build system configures itself to cross-compile, using the
cross-linker and cross-compiler in / tools.

--disable-profile
This builds the libraries without profiling information. Omit this option if profiling on the temporary tools is
necessary.

--enable-add-ons
This tells Glibc to use the NPTL add-on as its threading library.

--enable-kernel=2.6.22.5
This tells Glibc to compile the library with support for 2.6.22.5 and later Linux kernels. Workarounds for older
kernels are not enabled.

Linux From Scratch - Version 6.8

38

--with-headers=/tools/include
This tells Glibc to compile itself against the headers recently installed to the tools directory, so that it knows
exactly what features the kernel has and can optimize itself accordingly.

libc_cv_forced_unwind=yes
The linker installed during Section 5.4, “Binutils-2.21 - Pass 1” was cross-compiled and as such cannot be
used until Glibc has been installed. This means that the configure test for force-unwind support will fail, as it
relies on a working linker. The libc_cv_forced_unwind=yes variable is passed in order to inform configure that
force-unwind support is available without it having to run the test.

libc_cv_c_cleanup=yes
Simlarly, we pass libc_cv_c_cleanup=yes through to the configure script so that the test is skipped and C cleanup
handling support is configured.

During this stage the following warning might appear:

configure: WARNING:
*** These auxiliary programs are missing or
*** incompatible versions: msgfmt
*** some features will be disabled.
*** Check the INSTALL file for required versions.

The missing or incompatible msgfmt program is generally harmless. This msgfmt program is part of the Gettext
package which the host distribution should provide.

Compile the package:

make

This package does come with a test suite, however, it cannot be run at this time because we do not have a C++
compiler yet.

Note

The test suite also requires locale data to be installed in order to run successfully. Locale data provides
information to the system regarding such things as the date, time, and currency formats accepted and output
by system utilities. If the test suites are not being run in this chapter (as per the recommendation), there is
no need to install the locales now. The appropriate locales will be installed in the next chapter. To install
the Glibc locales anyway, use instructions from Section 6.9, “Glibc-2.13.”

Install the package:

make install

Details on this package are located in Section 6.9.4, “Contents of Glibc.”

Linux From Scratch - Version 6.8

39

5.8. Adjusting the Toolchain
Now that the temporary C libraries have been installed, all tools compiled in the rest of this chapter should be linked
against these libraries. In order to accomplish this, the cross-compiler's specs file needs to be adjusted to point to the
new dynamic linker in / tools.

This is done by dumping the compiler's “specs” file to a location where it will look for it by default. A simple sed
substitution then alters the dynamic linker that GCC will use. The principle here is to find all references to the dynamic
linker file in / lib or possibly / lib64 if the host system is 64-bit capable, and adjust them to point to the new
location in / tools.

For the sake of accuracy, it is recommended to use a copy-and-paste method when issuing the following command.
Be sure to visually inspect the specs file to verify that it has properly adjusted all references to the dynamic linker
location. Refer to Section 5.2, “Toolchain Technical Notes,” for the default name of the dynamic linker, if necessary.

SPECS=`dirname $($LFS_TGT-gcc -print-libgcc-file-name)`/specs
$LFS_TGT-gcc -dumpspecs | sed \
 -e 's@/lib\(64\)\?/ld@/tools&@g' \
 -e "/^*cpp:$/{n;s,$, -isystem /tools/include,}" > $SPECS
echo "New specs file is: $SPECS"
unset SPECS

Caution

At this point, it is imperative to stop and ensure that the basic functions (compiling and linking) of the new
toolchain are working as expected. To perform a sanity check, run the following commands:

echo 'main(){}' > dummy.c
$LFS_TGT-gcc -B/tools/lib dummy.c
readelf -l a.out | grep ': /tools'

If everything is working correctly, there should be no errors, and the output of the last command will be
of the form:

[Requesting program interpreter: /tools/lib/ld-linux.so.2]

Note that / tools/ lib, or / tools/ lib64 for 64-bit machines appears as the prefix of the dynamic
linker.

If the output is not shown as above or there was no output at all, then something is wrong. Investigate
and retrace the steps to find out where the problem is and correct it. This issue must be resolved before
continuing on. Something may have gone wrong with the specs file amendment above. In this case, redo
the specs file amendment, being careful to copy-and-paste the commands.

Once all is well, clean up the test files:

rm -v dummy.c a.out

Linux From Scratch - Version 6.8

40

Note

Building Binutils in the next section will serve as an additional check that the toolchain has been built
properly. If Binutils fails to build, it is an indication that something has gone wrong with the previous
Binutils, GCC, or Glibc installations.

Linux From Scratch - Version 6.8

41

5.9. Binutils-2.21 - Pass 2
The Binutils package contains a linker, an assembler, and other tools for handling object files.

Approximate build time: 1.3 SBU
Required disk space: 259 MB

5.9.1. Installation of Binutils
Create a separate build directory again:

mkdir -v ../binutils-build
cd ../binutils-build

Prepare Binutils for compilation:

CC="$LFS_TGT-gcc -B/tools/lib/" \
 AR=$LFS_TGT-ar RANLIB=$LFS_TGT-ranlib \
 ../binutils-2.21/configure --prefix=/tools \
 --disable-nls --with-lib-path=/tools/lib

The meaning of the new configure options:

CC="$LFS_TGT-gcc -B/tools/lib/" AR=$LFS_TGT-ar RANLIB=$LFS_TGT-ranlib
Because this is really a native build of Binutils, setting these variables ensures that the build system uses the
cross-compiler and associated tools instead of the ones on the host system.

--with-lib-path=/tools/lib
This tells the configure script to specify the library search path during the compilation of Binutils, resulting in
/ tools/ lib being passed to the linker. This prevents the linker from searching through library directories
on the host.

Compile the package:

make

Install the package:

make install

Now prepare the linker for the “Re-adjusting” phase in the next chapter:

make -C ld clean
make -C ld LIB_PATH=/usr/lib:/lib
cp -v ld/ld-new /tools/bin

The meaning of the make parameters:

-C ld clean
This tells the make program to remove all compiled files in the ld subdirectory.

-C ld LIB_PATH=/usr/lib:/lib
This option rebuilds everything in the ld subdirectory. Specifying the LIB_ PATH Makefile variable on the
command line allows us to override the default value of the temporary tools and point it to the proper final path.

Linux From Scratch - Version 6.8

42

The value of this variable specifies the linker's default library search path. This preparation is used in the next
chapter.

Details on this package are located in Section 6.12.2, “Contents of Binutils.”

Linux From Scratch - Version 6.8

43

5.10. GCC-4.5.2 - Pass 2
The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

Approximate build time: 9.0 SBU
Required disk space: 1003 MB

5.10.1. Installation of GCC
Versions of GCC later than 4.3 will treat this build as if it were a relocated compiler and disallow searching for
startfiles in the location specified by - - prefix. Since this will not be a relocated compiler, and the startfiles in
/ tools are crucial to building a working compiler linked to the libs in / tools, apply the following patch which
partially reverts GCC to its old behavior:

patch -Np1 -i ../gcc-4.5.2-startfiles_fix-1.patch

Under normal circumstances the GCC fixincludes script is run in order to fix potentially broken header files. As
GCC-4.5.2 and Glibc-2.13 have already been installed at this point, and their respective header files are known to
not require fixing, the fixincludes script is not required. In fact, running this script may actually pollute the build
environment by installing fixed headers from the host system into GCC's private include directory. The running of
the fixincludes script can be suppressed by issuing the following commands:

cp -v gcc/Makefile.in{,.orig}
sed 's@\./fixinc\.sh@-c true@' gcc/Makefile.in.orig > gcc/Makefile.in

For x86 machines, a bootstrap build of GCC uses the - fomit- frame- pointer compiler flag. Non-bootstrap
builds omit this flag by default, and the goal should be to produce a compiler that is exactly the same as if it were
bootstrapped. Apply the following sed command to force the build to use the flag:

cp -v gcc/Makefile.in{,.tmp}
sed 's/^T_CFLAGS =$/& -fomit-frame-pointer/' gcc/Makefile.in.tmp \
 > gcc/Makefile.in

The following command will change the location of GCC's default dynamic linker to use the one installed in / tools.
It also removes / usr/ include from GCC's include search path. Doing this now rather than adjusting the specs
file after installation ensures that the new dynamic linker is used during the actual build of GCC. That is, all of the
binaries created during the build will link against the new Glibc. Issue:

for file in \
 $(find gcc/config -name linux64.h -o -name linux.h -o -name sysv4.h)
do
 cp -uv $file{,.orig}
 sed -e 's@/lib\(64\)\?\(32\)\?/ld@/tools&@g' \
 -e 's@/usr@/tools@g' $file.orig > $file
 echo '
#undef STANDARD_INCLUDE_DIR
#define STANDARD_INCLUDE_DIR 0
#define STANDARD_STARTFILE_PREFIX_1 ""
#define STANDARD_STARTFILE_PREFIX_2 ""' >> $file
 touch $file.orig
done

Linux From Scratch - Version 6.8

44

In case the above seems hard to follow, let's break it down a bit. First we find all the files under the gcc/ config
directory that are named either linux. h, linux64. h or sysv4. h. For each file found, we copy it to a file of the
same name but with an added suffix of “.orig”. Then the first sed expression prepends “/tools” to every instance of
“/lib/ld”, “/lib64/ld” or “/lib32/ld”, while the second one replaces hard-coded instances of “/usr”. Then we add our
define statements which alter the include search path and the default startfile prefix to the end of the file. Finally, we
use touch to update the timestamp on the copied files. When used in conjunction with cp -u, this prevents unexpected
changes to the original files in case the commands are inadvertently run twice.

On x86_64, unsetting the multilib spec for GCC ensures that it won't attempt to link against libraries on the host:

case $(uname -m) in
 x86_64)
 for file in $(find gcc/config -name t-linux64) ; do \
 cp -v $file{,.orig}
 sed '/MULTILIB_OSDIRNAMES/d' $file.orig > $file
 done
 ;;
esac

As in the first build of GCC it requires the GMP, MPFR and MPC packages. Unpack the tarballs and move them
into the required directory names:

tar -jxf ../mpfr-3.0.0.tar.bz2
mv -v mpfr-3.0.0 mpfr
tar -jxf ../gmp-5.0.1.tar.bz2
mv -v gmp-5.0.1 gmp
tar -zxf ../mpc-0.8.2.tar.gz
mv -v mpc-0.8.2 mpc

Create a separate build directory again:

mkdir -v ../gcc-build
cd ../gcc-build

Before starting to build GCC, remember to unset any environment variables that override the default optimization
flags.

Now prepare GCC for compilation:

CC="$LFS_TGT-gcc -B/tools/lib/" \
 AR=$LFS_TGT-ar RANLIB=$LFS_TGT-ranlib \
 ../gcc-4.5.2/configure --prefix=/tools \
 --with-local-prefix=/tools --enable-clocale=gnu \
 --enable-shared --enable-threads=posix \
 --enable-__cxa_atexit --enable-languages=c,c++ \
 --disable-libstdcxx-pch --disable-multilib \
 --disable-bootstrap --disable-libgomp \
 --with-gmp-include=$(pwd)/gmp --with-gmp-lib=$(pwd)/gmp/.libs \
 --without-ppl --without-cloog

Linux From Scratch - Version 6.8

45

The meaning of the new configure options:

--enable-clocale=gnu

This option ensures the correct locale model is selected for the C++ libraries under all circumstances. If the
configure script finds the de_DE locale installed, it will select the correct gnu locale model. However, if the
de_DE locale is not installed, there is the risk of building Application Binary Interface (ABI)-incompatible C++
libraries because the incorrect generic locale model may be selected.

--enable-threads=posix

This enables C++ exception handling for multi-threaded code.

--enable-__cxa_atexit

This option allows use of _ _ cxa_ atexit, rather than atexit, to register C++ destructors for local statics
and global objects. This option is essential for fully standards-compliant handling of destructors. It also affects
the C++ ABI, and therefore results in C++ shared libraries and C++ programs that are interoperable with other
Linux distributions.

--enable-languages=c,c++

This option ensures that both the C and C++ compilers are built.

--disable-libstdcxx-pch

Do not build the pre-compiled header (PCH) for libstdc++. It takes up a lot of space, and we have no use for it.

--disable-bootstrap

For native builds of GCC, the default is to do a "bootstrap" build. This does not just compile GCC, but compiles
it several times. It uses the programs compiled in a first round to compile itself a second time, and then again
a third time. The second and third iterations are compared to make sure it can reproduce itself flawlessly. This
also implies that it was compiled correctly. However, the LFS build method should provide a solid compiler
without the need to bootstrap each time.

Compile the package:

make

Install the package:

make install

As a finishing touch, create a symlink. Many programs and scripts run cc instead of gcc, which is used to keep
programs generic and therefore usable on all kinds of UNIX systems where the GNU C compiler is not always
installed. Running cc leaves the system administrator free to decide which C compiler to install:

ln -vs gcc /tools/bin/cc

Linux From Scratch - Version 6.8

46

Caution

At this point, it is imperative to stop and ensure that the basic functions (compiling and linking) of the new
toolchain are working as expected. To perform a sanity check, run the following commands:

echo 'main(){}' > dummy.c
cc dummy.c
readelf -l a.out | grep ': /tools'

If everything is working correctly, there should be no errors, and the output of the last command will be
of the form:

[Requesting program interpreter: /tools/lib/ld-linux.so.2]

Note that / tools/ lib, or / tools/ lib64 for 64-bit machines appears as the prefix of the dynamic
linker.

If the output is not shown as above or there was no output at all, then something is wrong. Investigate and
retrace the steps to find out where the problem is and correct it. This issue must be resolved before continuing
on. First, perform the sanity check again, using gcc instead of cc. If this works, then the / tools/ bin/ cc
symlink is missing. Install the symlink as per above. Next, ensure that the PATH is correct. This can be
checked by running echo $PATH and verifying that / tools/ bin is at the head of the list. If the PATH
is wrong it could mean that you are not logged in as user lfs or that something went wrong back in
Section 4.4, “Setting Up the Environment.”

Once all is well, clean up the test files:

rm -v dummy.c a.out

Details on this package are located in Section 6.16.2, “Contents of GCC.”

Linux From Scratch - Version 6.8

47

5.11. Tcl-8.5.9
The Tcl package contains the Tool Command Language.

Approximate build time: 0.5 SBU
Required disk space: 32 MB

5.11.1. Installation of Tcl
This package and the next two (Expect and DejaGNU) are installed to support running the test suites for GCC and
Binutils. Installing three packages for testing purposes may seem excessive, but it is very reassuring, if not essential,
to know that the most important tools are working properly. Even if the test suites are not run in this chapter (they
are not mandatory), these packages are required to run the test suites in Chapter 6.

Prepare Tcl for compilation:

cd unix
./configure --prefix=/tools

Build the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools
here in this chapter. To run the Tcl test suite anyway, issue the following command:

TZ=UTC make test

The Tcl test suite may experience failures under certain host conditions that are not fully understood. Therefore, test
suite failures here are not surprising, and are not considered critical. The TZ=UTC parameter sets the time zone to
Coordinated Universal Time (UTC), also known as Greenwich Mean Time (GMT), but only for the duration of the
test suite run. This ensures that the clock tests are exercised correctly. Details on the TZ environment variable are
provided in Chapter 7.

Install the package:

make install

Make the installed library writable so debugging symbols can be removed later:

chmod -v u+w /tools/lib/libtcl8.5.so

Install Tcl's headers. The next package, Expect, requires them to build.

make install-private-headers

Now make a necessary symbolic link:

ln -sv tclsh8.5 /tools/bin/tclsh

5.11.2. Contents of Tcl
Installed programs: tclsh (link to tclsh8.5) and tclsh8.5
Installed library: libtcl8.5.so, libtclstub8.5.a

Linux From Scratch - Version 6.8

48

Short Descriptions

tclsh8.5 The Tcl command shell

tclsh A link to tclsh8.5

libtcl8.5.so The Tcl library

libtclstub8.5.a The Tcl Stub library

Linux From Scratch - Version 6.8

49

5.12. Expect-5.45
The Expect package contains a program for carrying out scripted dialogues with other interactive programs.

Approximate build time: 0.1 SBU
Required disk space: 4.1 MB

5.12.1. Installation of Expect
First, force Expect's configure script to use / bin/ stty instead of a / usr/ local/ bin/ stty it may find on the
host system. This will ensure that our test suite tools remain sane for the final builds of our toolchain:

cp -v configure{,.orig}
sed 's:/usr/local/bin:/bin:' configure.orig > configure

Now prepare Expect for compilation:

./configure --prefix=/tools --with-tcl=/tools/lib \
 --with-tclinclude=/tools/include

The meaning of the configure options:

--with-tcl=/tools/lib
This ensures that the configure script finds the Tcl installation in the temporary tools location instead of possibly
locating an existing one on the host system.

--with-tclinclude=/tools/include
This explicitly tells Expect where to find Tcl's internal headers. Using this option avoids conditions where
configure fails because it cannot automatically discover the location of Tcl's headers.

Build the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools
here in this chapter. To run the Expect test suite anyway, issue the following command:

make test

Note that the Expect test suite is known to experience failures under certain host conditions that are not within our
control. Therefore, test suite failures here are not surprising and are not considered critical.

Install the package:

make SCRIPTS="" install

The meaning of the make parameter:

SCRIPTS=""
This prevents installation of the supplementary Expect scripts, which are not needed.

5.12.2. Contents of Expect
Installed program: expect
Installed library: libexpect-5.45.a

Linux From Scratch - Version 6.8

50

Short Descriptions

expect Communicates with other interactive programs according to a script

libexpect-5.45.a Contains functions that allow Expect to be used as a Tcl extension or to be used directly
from C or C++ (without Tcl)

Linux From Scratch - Version 6.8

51

5.13. DejaGNU-1.4.4
The DejaGNU package contains a framework for testing other programs.

Approximate build time: less than 0.1 SBU
Required disk space: 6.1 MB

5.13.1. Installation of DejaGNU
The most recent version of this package was released in 2004. Apply some fixes that have accumulated since then:

patch -Np1 -i ../dejagnu-1.4.4-consolidated-1.patch

Prepare DejaGNU for compilation:

./configure --prefix=/tools

Build and install the package:

make install

To test the results, issue:

make check

5.13.2. Contents of DejaGNU
Installed program: runtest

Short Descriptions

runtest A wrapper script that locates the proper expect shell and then runs DejaGNU

Linux From Scratch - Version 6.8

52

5.14. Ncurses-5.7
The Ncurses package contains libraries for terminal-independent handling of character screens.

Approximate build time: 0.7 SBU
Required disk space: 30 MB

5.14.1. Installation of Ncurses
Prepare Ncurses for compilation:

./configure --prefix=/tools --with-shared \
 --without-debug --without-ada --enable-overwrite

The meaning of the configure options:

--without-ada
This ensures that Ncurses does not build support for the Ada compiler which may be present on the host but will
not be available once we enter the chroot environment.

--enable-overwrite
This tells Ncurses to install its header files into / tools/ include, instead of
/ tools/ include/ ncurses, to ensure that other packages can find the Ncurses headers successfully.

Compile the package:

make

This package has a test suite, but it can only be run after the package has been installed. The tests reside in the
test/ directory. See the README file in that directory for further details.

Install the package:

make install

Details on this package are located in Section 6.19.2, “Contents of Ncurses.”

Linux From Scratch - Version 6.8

53

5.15. Bash-4.2
The Bash package contains the Bourne-Again SHell.

Approximate build time: 0.5 SBU
Required disk space: 35 MB

5.15.1. Installation of Bash
Prepare Bash for compilation:

./configure --prefix=/tools --without-bash-malloc

The meaning of the configure options:

--without-bash-malloc
This option turns off the use of Bash's memory allocation (malloc) function which is known to cause
segmentation faults. By turning this option off, Bash will use the malloc functions from Glibc which are more
stable.

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools
here in this chapter. To run the Bash test suite anyway, issue the following command:

make tests

Install the package:

make install

Make a link for the programs that use sh for a shell:

ln -vs bash /tools/bin/sh

Details on this package are located in Section 6.29.2, “Contents of Bash.”

Linux From Scratch - Version 6.8

54

5.16. Bzip2-1.0.6
The Bzip2 package contains programs for compressing and decompressing files. Compressing text files with bzip2
yields a much better compression percentage than with the traditional gzip.

Approximate build time: less than 0.1 SBU
Required disk space: 4.8 MB

5.16.1. Installation of Bzip2
The Bzip2 package does not contain a configure script. Compile and test it with:

make

Install the package:

make PREFIX=/tools install

Details on this package are located in Section 6.36.2, “Contents of Bzip2.”

Linux From Scratch - Version 6.8

55

5.17. Coreutils-8.10
The Coreutils package contains utilities for showing and setting the basic system characteristics.

Approximate build time: 0.7 SBU
Required disk space: 88 MB

5.17.1. Installation of Coreutils
Prepare Coreutils for compilation:

./configure --prefix=/tools --enable-install-program=hostname

The meaning of the configure options:

--enable-install-program=hostname
This enables the hostname binary to be built and installed – it is disabled by default but is required by the Perl
test suite.

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools
here in this chapter. To run the Coreutils test suite anyway, issue the following command:

make RUN_EXPENSIVE_TESTS=yes check

The RUN_ EXPENSIVE_ TESTS=yes parameter tells the test suite to run several additional tests that are considered
relatively expensive (in terms of CPU power and memory usage) on some platforms, but generally are not a problem
on Linux.

Install the package:

make install

The above command refuses to install su because the program cannot be installed setuid root as a non-privileged user.
By manually installing it with a different name, we can use it for running tests in the final system as a non-privileged
user and we keep a possibly useful su from our host first in our PATH. Install it with:

cp -v src/su /tools/bin/su-tools

Details on this package are located in Section 6.22.2, “Contents of Coreutils.”

Linux From Scratch - Version 6.8

56

5.18. Diffutils-3.0
The Diffutils package contains programs that show the differences between files or directories.

Approximate build time: 0.1 SBU
Required disk space: 6.1 MB

5.18.1. Installation of Diffutils
Prepare Diffutils for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools
here in this chapter. To run the Diffutils test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.37.2, “Contents of Diffutils.”

Linux From Scratch - Version 6.8

57

5.19. File-5.05
The File package contains a utility for determining the type of a given file or files.

Approximate build time: 0.2 SBU
Required disk space: 9.5 MB

5.19.1. Installation of File
Prepare File for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools
here in this chapter. To run the File test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.39.2, “Contents of File.”

Linux From Scratch - Version 6.8

58

5.20. Findutils-4.4.2
The Findutils package contains programs to find files. These programs are provided to recursively search through
a directory tree and to create, maintain, and search a database (often faster than the recursive find, but unreliable if
the database has not been recently updated).

Approximate build time: 0.3 SBU
Required disk space: 20 MB

5.20.1. Installation of Findutils
Prepare Findutils for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools
here in this chapter. To run the Findutils test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.40.2, “Contents of Findutils.”

Linux From Scratch - Version 6.8

59

5.21. Gawk-3.1.8
The Gawk package contains programs for manipulating text files.

Approximate build time: 0.2 SBU
Required disk space: 19 MB

5.21.1. Installation of Gawk
Prepare Gawk for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools
here in this chapter. To run the Gawk test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.38.2, “Contents of Gawk.”

Linux From Scratch - Version 6.8

60

5.22. Gettext-0.18.1.1
The Gettext package contains utilities for internationalization and localization. These allow programs to be compiled
with NLS (Native Language Support), enabling them to output messages in the user's native language.

Approximate build time: 0.8 SBU
Required disk space: 82 MB

5.22.1. Installation of Gettext
For our temporary set of tools, we only need to build and install one binary from Gettext.

Prepare Gettext for compilation:

cd gettext-tools
./configure --prefix=/tools --disable-shared

The meaning of the configure option:

--disable-shared
We do not need to install any of the shared Gettext libraries at this time, therefore there is no need to build them.

Compile the package:

make -C gnulib-lib
make -C src msgfmt

As only one binary has been compiled, it is not possible to run the test suite without compiling additional support
libraries from the Gettext package. It is therefore not recommended to attempt to run the test suite at this stage.

Install the msgfmt binary:

cp -v src/msgfmt /tools/bin

Details on this package are located in Section 6.42.2, “Contents of Gettext.”

Linux From Scratch - Version 6.8

61

5.23. Grep-2.7
The Grep package contains programs for searching through files.

Approximate build time: 0.1 SBU
Required disk space: 6.7 MB

5.23.1. Installation of Grep
Prepare Grep for compilation:

./configure --prefix=/tools \
 --disable-perl-regexp

The meaning of the configure switches:

--disable-perl-regexp
This ensures that the grep program does not get linked against a Perl Compatible Regular Expression (PCRE)
library that may be present on the host but will not be available once we enter the chroot environment.

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools
here in this chapter. To run the Grep test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.27.2, “Contents of Grep.”

Linux From Scratch - Version 6.8

62

5.24. Gzip-1.4
The Gzip package contains programs for compressing and decompressing files.

Approximate build time: less than 0.1 SBU
Required disk space: 3.3 MB

5.24.1. Installation of Gzip
Prepare Gzip for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools
here in this chapter. To run the Gzip test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.45.2, “Contents of Gzip.”

Linux From Scratch - Version 6.8

63

5.25. M4-1.4.15
The M4 package contains a macro processor.

Approximate build time: 0.2 SBU
Required disk space: 11.6 MB

5.25.1. Installation of M4
Prepare M4 for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools
here in this chapter. To run the M4 test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.24.2, “Contents of M4.”

Linux From Scratch - Version 6.8

64

5.26. Make-3.82
The Make package contains a program for compiling packages.

Approximate build time: 0.1 SBU
Required disk space: 9.6 MB

5.26.1. Installation of Make
Prepare Make for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools
here in this chapter. To run the Make test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.49.2, “Contents of Make.”

Linux From Scratch - Version 6.8

65

5.27. Patch-2.6.1
The Patch package contains a program for modifying or creating files by applying a “patch” file typically created
by the diff program.

Approximate build time: less than 0.1 SBU
Required disk space: 1.9 MB

5.27.1. Installation of Patch
Prepare Patch for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools
here in this chapter. To run the Patch test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.53.2, “Contents of Patch.”

Linux From Scratch - Version 6.8

66

5.28. Perl-5.12.3
The Perl package contains the Practical Extraction and Report Language.

Approximate build time: 0.8 SBU
Required disk space: 106 MB

5.28.1. Installation of Perl
First apply the following patch to adapt some hard-wired paths to the C library:

patch -Np1 -i ../perl-5.12.3-libc-1.patch

Prepare Perl for compilation (make sure to get the 'Data/Dumper Fcntl IO' part of the command correct—they are
all letters):

sh Configure -des -Dprefix=/tools \
 -Dstatic_ext='Data/Dumper Fcntl IO'

The meaning of the configure options:

-Dstatic_ext='Data/Dumper Fcntl IO'
This tells Perl to build the minimum set of static extensions needed for installing and testing the Coreutils and
Glibc packages in the next chapter.

Only a few of the utilities contained in this package, and one of its libraries, need to be built:

make perl utilities ext/Errno/pm_to_blib

Although Perl comes with a test suite, it is not recommended to run it at this point. Only part of Perl was built and
running make test now will cause the rest of Perl to be built as well, which is unnecessary at this point. The test suite
can be run in the next chapter if desired.

Install these tools and their libraries:

cp -v perl pod/pod2man /tools/bin
mkdir -pv /tools/lib/perl5/5.12.3
cp -Rv lib/* /tools/lib/perl5/5.12.3

Details on this package are located in Section 6.33.2, “Contents of Perl.”

Linux From Scratch - Version 6.8

67

5.29. Sed-4.2.1
The Sed package contains a stream editor.

Approximate build time: 0.1 SBU
Required disk space: 8.0 MB

5.29.1. Installation of Sed
Prepare Sed for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools
here in this chapter. To run the Sed test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.17.2, “Contents of Sed.”

Linux From Scratch - Version 6.8

68

5.30. Tar-1.25
The Tar package contains an archiving program.

Approximate build time: 0.3 SBU
Required disk space: 20.9 MB

5.30.1. Installation of Tar
Prepare Tar for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools
here in this chapter. To run the Tar test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.58.2, “Contents of Tar.”

Linux From Scratch - Version 6.8

69

5.31. Texinfo-4.13a
The Texinfo package contains programs for reading, writing, and converting info pages.

Approximate build time: 0.2 SBU
Required disk space: 20 MB

5.31.1. Installation of Texinfo
Prepare Texinfo for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools
here in this chapter. To run the Texinfo test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.59.2, “Contents of Texinfo.”

Linux From Scratch - Version 6.8

70

5.32. Xz-5.0.1
The Xz package contains programs for compressing and decompressing files. It provides capabilities for the lzma
and the newer xz compression formats. Compressing text files with xz yields a better compression percentage than
with the traditional gzip or bzip2 commands.

Approximate build time: 0.3 SBU
Required disk space: 14 MB

5.32.1. Installation of Xz-Utils
Prepare Xz for compilation:

./configure --prefix=/tools

Compile the package:

make

Compilation is now complete. As discussed earlier, running the test suite is not mandatory for the temporary tools
here in this chapter. To run the Xz test suite anyway, issue the following command:

make check

Install the package:

make install

Details on this package are located in Section 6.50.2, “Contents of Xz.”

Linux From Scratch - Version 6.8

71

5.33. Stripping
The steps in this section are optional, but if the LFS partition is rather small, it is beneficial to learn that unnecessary
items can be removed. The executables and libraries built so far contain about 70 MB of unneeded debugging symbols.
Remove those symbols with:

strip --strip-debug /tools/lib/*
strip --strip-unneeded /tools/{,s}bin/*

These commands will skip a number of files, reporting that it does not recognize their file format. Most of these are
scripts instead of binaries.

Take care not to use - - strip- unneeded on the libraries. The static ones would be destroyed and the toolchain
packages would need to be built all over again.

To save nearly 25 MB more, remove the documentation:

rm -rf /tools/{,share}/{info,man}

At this point, you should have at least 850 MB of free space in $LFS that can be used to build and install Glibc in
the next phase. If you can build and install Glibc, you can build and install the rest too.

5.34. Changing Ownership

Note

The commands in the remainder of this book must be performed while logged in as user root and no
longer as user lfs. Also, double check that $LFS is set in root's environment.

Currently, the $LFS/ tools directory is owned by the user lfs, a user that exists only on the host system. If
the $LFS/ tools directory is kept as is, the files are owned by a user ID without a corresponding account. This
is dangerous because a user account created later could get this same user ID and would own the $LFS/ tools
directory and all the files therein, thus exposing these files to possible malicious manipulation.

To avoid this issue, you could add the lfs user to the new LFS system later when creating the / etc/ passwd file,
taking care to assign it the same user and group IDs as on the host system. Better yet, change the ownership of the
$LFS/ tools directory to user root by running the following command:

chown -R root:root $LFS/tools

Although the $LFS/ tools directory can be deleted once the LFS system has been finished, it can be retained to
build additional LFS systems of the same book version. How best to backup $LFS/ tools is a matter of personal
preference.

Caution

If you intend to keep the temporary tools for use in building future LFS systems, now is the time to back
them up. Subsequent commands in chapter 6 will alter the tools currently in place, rendering them useless
for future builds.

Linux From Scratch - Version 6.8

Part III. Building the LFS System

Linux From Scratch - Version 6.8

73

Chapter 6. Installing Basic System Software

6.1. Introduction
In this chapter, we enter the building site and start constructing the LFS system in earnest. That is, we chroot into the
temporary mini Linux system, make a few final preparations, and then begin installing the packages.

The installation of this software is straightforward. Although in many cases the installation instructions could be
made shorter and more generic, we have opted to provide the full instructions for every package to minimize the
possibilities for mistakes. The key to learning what makes a Linux system work is to know what each package is used
for and why you (or the system) may need it.

We do not recommend using optimizations. They can make a program run slightly faster, but they may also cause
compilation difficulties and problems when running the program. If a package refuses to compile when using
optimization, try to compile it without optimization and see if that fixes the problem. Even if the package does compile
when using optimization, there is the risk it may have been compiled incorrectly because of the complex interactions
between the code and build tools. Also note that the - march and - mtune options using values not specified in the
book have not been tested. This may cause problems with the toolchain packages (Binutils, GCC and Glibc). The
small potential gains achieved in using compiler optimizations are often outweighed by the risks. First-time builders
of LFS are encouraged to build without custom optimizations. The subsequent system will still run very fast and be
stable at the same time.

The order that packages are installed in this chapter needs to be strictly followed to ensure that no program accidentally
acquires a path referring to / tools hard-wired into it. For the same reason, do not compile separate packages in
parallel. Compiling in parallel may save time (especially on dual-CPU machines), but it could result in a program
containing a hard-wired path to / tools, which will cause the program to stop working when that directory is
removed.

Before the installation instructions, each installation page provides information about the package, including a concise
description of what it contains, approximately how long it will take to build, and how much disk space is required
during this building process. Following the installation instructions, there is a list of programs and libraries (along
with brief descriptions of these) that the package installs.

Note

The SBU values and required disk space includes test suite data for all applicable packages in Chapter 6.

6.2. Preparing Virtual Kernel File Systems
Various file systems exported by the kernel are used to communicate to and from the kernel itself. These file systems
are virtual in that no disk space is used for them. The content of the file systems resides in memory.

Begin by creating directories onto which the file systems will be mounted:

mkdir -v $LFS/{dev,proc,sys}

Linux From Scratch - Version 6.8

74

6.2.1. Creating Initial Device Nodes

When the kernel boots the system, it requires the presence of a few device nodes, in particular the console and
null devices. The device nodes must be created on the hard disk so that they are available before udevd has been
started, and additionally when Linux is started with init=/ bin/ bash. Create the devices by running the following
commands:

mknod -m 600 $LFS/dev/console c 5 1
mknod -m 666 $LFS/dev/null c 1 3

6.2.2. Mounting and Populating /dev

The recommended method of populating the / dev directory with devices is to mount a virtual filesystem (such as
tmpfs) on the / dev directory, and allow the devices to be created dynamically on that virtual filesystem as they
are detected or accessed. Device creation is generally done during the boot process by Udev. Since this new system
does not yet have Udev and has not yet been booted, it is necessary to mount and populate / dev manually. This is
accomplished by bind mounting the host system's / dev directory. A bind mount is a special type of mount that allows
you to create a mirror of a directory or mount point to some other location. Use the following command to achieve this:

mount -v --bind /dev $LFS/dev

6.2.3. Mounting Virtual Kernel File Systems

Now mount the remaining virtual kernel filesystems:

mount -vt devpts devpts $LFS/dev/pts
mount -vt tmpfs shm $LFS/dev/shm
mount -vt proc proc $LFS/proc
mount -vt sysfs sysfs $LFS/sys

6.3. Package Management
Package Management is an often requested addition to the LFS Book. A Package Manager allows tracking the
installation of files making it easy to remove and upgrade packages. As well as the binary and library files, a package
manager will handle the installation of configuration files. Before you begin to wonder, NO—this section will not talk
about nor recommend any particular package manager. What it provides is a roundup of the more popular techniques
and how they work. The perfect package manager for you may be among these techniques or may be a combination
of two or more of these techniques. This section briefly mentions issues that may arise when upgrading packages.

Some reasons why no package manager is mentioned in LFS or BLFS include:

• Dealing with package management takes the focus away from the goals of these books—teaching how a Linux
system is built.

• There are multiple solutions for package management, each having its strengths and drawbacks. Including one
that satisfies all audiences is difficult.

There are some hints written on the topic of package management. Visit the Hints Project and see if one of them
fits your need.

http://www.linuxfromscratch.org/hints/list.html

Linux From Scratch - Version 6.8

75

6.3.1. Upgrade Issues

A Package Manager makes it easy to upgrade to newer versions when they are released. Generally the instructions
in the LFS and BLFS Book can be used to upgrade to the newer versions. Here are some points that you should be
aware of when upgrading packages, especially on a running system.

• If one of the toolchain packages (Glibc, GCC or Binutils) needs to be upgraded to a newer minor version, it is
safer to rebuild LFS. Though you may be able to get by rebuilding all the packages in their dependency order,
we do not recommend it. For example, if glibc-2.2.x needs to be updated to glibc-2.3.x, it is safer to rebuild. For
micro version updates, a simple reinstallation usually works, but is not guaranteed. For example, upgrading from
glibc-2.3.4 to glibc-2.3.5 will not usually cause any problems.

• If a package containing a shared library is updated, and if the name of the library changes, then all the packages
dynamically linked to the library need to be recompiled to link against the newer library. (Note that there is
no correlation between the package version and the name of the library.) For example, consider a package
foo-1.2.3 that installs a shared library with name libfoo. so. 1. Say you upgrade the package to a newer
version foo-1.2.4 that installs a shared library with name libfoo. so. 2. In this case, all packages that are
dynamically linked to libfoo. so. 1 need to be recompiled to link against libfoo. so. 2. Note that you
should not remove the previous libraries until the dependent packages are recompiled.

6.3.2. Package Management Techniques

The following are some common package management techniques. Before making a decision on a package manager,
do some research on the various techniques, particularly the drawbacks of the particular scheme.

6.3.2.1. It is All in My Head!

Yes, this is a package management technique. Some folks do not find the need for a package manager because they
know the packages intimately and know what files are installed by each package. Some users also do not need any
package management because they plan on rebuilding the entire system when a package is changed.

6.3.2.2. Install in Separate Directories

This is a simplistic package management that does not need any extra package to manage the installations. Each
package is installed in a separate directory. For example, package foo-1.1 is installed in / usr/ pkg/ foo- 1. 1 and
a symlink is made from / usr/ pkg/ foo to / usr/ pkg/ foo- 1. 1. When installing a new version foo-1.2, it is
installed in / usr/ pkg/ foo- 1. 2 and the previous symlink is replaced by a symlink to the new version.

Environment variables such as PATH, LD_ LIBRARY_ PATH, MANPATH, INFOPATH and CPPFLAGS need to be
expanded to include / usr/ pkg/ foo. For more than a few packages, this scheme becomes unmanageable.

6.3.2.3. Symlink Style Package Management

This is a variation of the previous package management technique. Each package is installed similar to the previous
scheme. But instead of making the symlink, each file is symlinked into the / usr hierarchy. This removes the need
to expand the environment variables. Though the symlinks can be created by the user to automate the creation, many
package managers have been written using this approach. A few of the popular ones include Stow, Epkg, Graft, and
Depot.

Linux From Scratch - Version 6.8

76

The installation needs to be faked, so that the package thinks that it is installed in / usr though in reality it is installed
in the / usr/ pkg hierarchy. Installing in this manner is not usually a trivial task. For example, consider that you are
installing a package libfoo-1.1. The following instructions may not install the package properly:

./configure --prefix=/usr/pkg/libfoo/1.1
make
make install

The installation will work, but the dependent packages may not link to libfoo as you would expect. If you compile
a package that links against libfoo, you may notice that it is linked to / usr/ pkg/ libfoo/ 1. 1/ lib/ libfoo.
so. 1 instead of / usr/ lib/ libfoo. so. 1 as you would expect. The correct approach is to use the DESTDIR
strategy to fake installation of the package. This approach works as follows:

./configure --prefix=/usr
make
make DESTDIR=/usr/pkg/libfoo/1.1 install

Most packages support this approach, but there are some which do not. For the non-compliant packages, you may
either need to manually install the package, or you may find that it is easier to install some problematic packages
into / opt.

6.3.2.4. Timestamp Based

In this technique, a file is timestamped before the installation of the package. After the installation, a simple use of
the find command with the appropriate options can generate a log of all the files installed after the timestamp file
was created. A package manager written with this approach is install-log.

Though this scheme has the advantage of being simple, it has two drawbacks. If, during installation, the files are
installed with any timestamp other than the current time, those files will not be tracked by the package manager. Also,
this scheme can only be used when one package is installed at a time. The logs are not reliable if two packages are
being installed on two different consoles.

6.3.2.5. Tracing Installation Scripts

In this approach, the commands that the installation scripts perform are recorded. There are two techniques that one
can use:

The LD_ PRELOAD environment variable can be set to point to a library to be preloaded before installation. During
installation, this library tracks the packages that are being installed by attaching itself to various executables such
as cp, install, mv and tracking the system calls that modify the filesystem. For this approach to work, all the
executables need to be dynamically linked without the suid or sgid bit. Preloading the library may cause some
unwanted side-effects during installation. Therefore, it is advised that one performs some tests to ensure that the
package manager does not break anything and logs all the appropriate files.

The second technique is to use strace, which logs all system calls made during the execution of the installation scripts.

6.3.2.6. Creating Package Archives

In this scheme, the package installation is faked into a separate tree as described in the Symlink style package
management. After the installation, a package archive is created using the installed files. This archive is then used to
install the package either on the local machine or can even be used to install the package on other machines.

Linux From Scratch - Version 6.8

77

This approach is used by most of the package managers found in the commercial distributions. Examples of
package managers that follow this approach are RPM (which, incidentally, is required by the Linux Standard Base
Specification), pkg-utils, Debian's apt, and Gentoo's Portage system. A hint describing how to adopt this style of
package management for LFS systems is located at http:// www. linuxfromscratch. org/ hints/ downloads/ files/ fakeroot.
txt.

Creation of package files that include dependency information is complex and is beyond the scope of LFS.

Slackware uses a tar based system for package archives. This system purposely does not handle package dependencies
as more complex package managers do. For details of Slackware package management, see http:// www. slackbook.
org/ html/ package- management. html.

6.3.2.7. User Based Management

This scheme, unique to LFS, was devised by Matthias Benkmann, and is available from the Hints Project. In this
scheme, each package is installed as a separate user into the standard locations. Files belonging to a package are easily
identified by checking the user ID. The features and shortcomings of this approach are too complex to describe in this
section. For the details please see the hint at http:// www. linuxfromscratch. org/ hints/ downloads/ files/ more_ control_
and_ pkg_ man. txt.

6.3.3. Deploying LFS on Multiple Systems
One of the advantages of an LFS system is that there are no files that depend on the position of files on a disk
system. Cloning an LFS build to another computer with an architecture similar to the base system is as simple as
using tar on the LFS partition that contains the root directory (about 250MB uncompressed for a base LFS build),
copying that file via network transfer or CD-ROM to the new system and expanding it. From that point, a few
configuration files will have to be changed. Configuration files that may need to be updated include: / etc/ hosts,
/ etc/ fstab, / etc/ passwd, / etc/ group, / etc/ shadow, / etc/ ld. so. conf, / etc/ scsi_
id. config, / etc/ sysconfig/ network and / etc/ sysconfig/ network- devices/ ifconfig.
eth0/ ipv4.

A custom kernel may need to be built for the new system depending on differences in system hardware and the
original kernel configuration.

Finally the new system has to be made bootable via Section 8.4, “Using GRUB to Set Up the Boot Process”.

6.4. Entering the Chroot Environment
It is time to enter the chroot environment to begin building and installing the final LFS system. As user root, run
the following command to enter the realm that is, at the moment, populated with only the temporary tools:

chroot "$LFS" /tools/bin/env -i \
 HOME=/root TERM="$TERM" PS1='\u:\w\$ ' \
 PATH=/bin:/usr/bin:/sbin:/usr/sbin:/tools/bin \
 /tools/bin/bash --login +h

The - i option given to the env command will clear all variables of the chroot environment. After that, only the HOME,
TERM, PS1, and PATH variables are set again. The TERM=$TERM construct will set the TERM variable inside chroot
to the same value as outside chroot. This variable is needed for programs like vim and less to operate properly. If
other variables are needed, such as CFLAGS or CXXFLAGS, this is a good place to set them again.

From this point on, there is no need to use the LFS variable anymore, because all work will be restricted to the LFS
file system. This is because the Bash shell is told that $LFS is now the root (/) directory.

http://www.linux-foundation.org/en/Specifications
http://www.linux-foundation.org/en/Specifications
http://www.linuxfromscratch.org/hints/downloads/files/fakeroot.txt
http://www.linuxfromscratch.org/hints/downloads/files/fakeroot.txt
http://www.slackbook.org/html/package-management.html
http://www.slackbook.org/html/package-management.html
http://www.linuxfromscratch.org/hints/list.html
http://www.linuxfromscratch.org/hints/downloads/files/more_control_and_pkg_man.txt
http://www.linuxfromscratch.org/hints/downloads/files/more_control_and_pkg_man.txt

Linux From Scratch - Version 6.8

78

Notice that / tools/ bin comes last in the PATH. This means that a temporary tool will no longer be used once
its final version is installed. This occurs when the shell does not “remember” the locations of executed binaries—for
this reason, hashing is switched off by passing the +h option to bash.

Note that the bash prompt will say I have no name! This is normal because the / etc/ passwd file has not
been created yet.

Note

It is important that all the commands throughout the remainder of this chapter and the following chapters
are run from within the chroot environment. If you leave this environment for any reason (rebooting for
example), ensure that the virtual kernel filesystems are mounted as explained in Section 6.2.2, “Mounting
and Populating /dev” and Section 6.2.3, “Mounting Virtual Kernel File Systems” and enter chroot again
before continuing with the installation.

6.5. Creating Directories
It is time to create some structure in the LFS file system. Create a standard directory tree by issuing the following
commands:

mkdir -pv /{bin,boot,etc/opt,home,lib,mnt,opt}
mkdir -pv /{media/{floppy,cdrom},sbin,srv,var}
install -dv -m 0750 /root
install -dv -m 1777 /tmp /var/tmp
mkdir -pv /usr/{,local/}{bin,include,lib,sbin,src}
mkdir -pv /usr/{,local/}share/{doc,info,locale,man}
mkdir -v /usr/{,local/}share/{misc,terminfo,zoneinfo}
mkdir -pv /usr/{,local/}share/man/man{1..8}
for dir in /usr /usr/local; do
 ln -sv share/{man,doc,info} $dir
done
case $(uname -m) in
 x86_64) ln -sv lib /lib64 && ln -sv lib /usr/lib64 ;;
esac
mkdir -v /var/{lock,log,mail,run,spool}
mkdir -pv /var/{opt,cache,lib/{misc,locate},local}

Directories are, by default, created with permission mode 755, but this is not desirable for all directories. In the
commands above, two changes are made—one to the home directory of user root, and another to the directories
for temporary files.

The first mode change ensures that not just anybody can enter the / root directory—the same as a normal user would
do with his or her home directory. The second mode change makes sure that any user can write to the / tmp and
/ var/ tmp directories, but cannot remove another user's files from them. The latter is prohibited by the so-called
“sticky bit,” the highest bit (1) in the 1777 bit mask.

6.5.1. FHS Compliance Note
The directory tree is based on the Filesystem Hierarchy Standard (FHS) (available at http:// www. pathname. com/ fhs/).
In addition to the FHS, we create compatibility symlinks for the man, doc, and info directories since many
packages still try to install their documentation into / usr/ <directory> or / usr/ local/ <directory> as

http://www.pathname.com/fhs/

Linux From Scratch - Version 6.8

79

opposed to / usr/ share/ <directory> or / usr/ local/ share/ <directory>. The FHS also stipulates
the existence of / usr/ local/ games and / usr/ share/ games. The FHS is not precise as to the structure of the
/ usr/ local/ share subdirectory, so we create only the directories that are needed. However, feel free to create
these directories if you prefer to conform more strictly to the FHS.

6.6. Creating Essential Files and Symlinks
Some programs use hard-wired paths to programs which do not exist yet. In order to satisfy these programs, create a
number of symbolic links which will be replaced by real files throughout the course of this chapter after the software
has been installed:

ln -sv /tools/bin/{bash,cat,echo,pwd,stty} /bin
ln -sv /tools/bin/perl /usr/bin
ln -sv /tools/lib/libgcc_s.so{,.1} /usr/lib
ln -sv /tools/lib/libstdc++.so{,.6} /usr/lib
ln -sv bash /bin/sh

A proper Linux system maintains a list of the mounted file systems in the file / etc/ mtab. Normally, this file would
be created when we mount a new file system. Since we will not be mounting any file systems inside our chroot
environment, create an empty file for utilities that expect the presence of / etc/ mtab:

touch /etc/mtab

In order for user root to be able to login and for the name “root” to be recognized, there must be relevant entries
in the / etc/ passwd and / etc/ group files.

Create the / etc/ passwd file by running the following command:

cat > /etc/passwd << "EOF"
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/dev/null:/bin/false
nobody:x:99:99:Unprivileged User:/dev/null:/bin/false
EOF

The actual password for root (the “x” used here is just a placeholder) will be set later.

Linux From Scratch - Version 6.8

80

Create the / etc/ group file by running the following command:

cat > /etc/group << "EOF"
root:x:0:
bin:x:1:
sys:x:2:
kmem:x:3:
tty:x:4:
tape:x:5:
daemon:x:6:
floppy:x:7:
disk:x:8:
lp:x:9:
dialout:x:10:
audio:x:11:
video:x:12:
utmp:x:13:
usb:x:14:
cdrom:x:15:
mail:x:34:
nogroup:x:99:
EOF

The created groups are not part of any standard—they are groups decided on in part by the requirements of the
Udev configuration in this chapter, and in part by common convention employed by a number of existing Linux
distributions. The Linux Standard Base (LSB, available at http:// www. linuxbase. org) recommends only that, besides
the group root with a Group ID (GID) of 0, a group bin with a GID of 1 be present. All other group names and
GIDs can be chosen freely by the system administrator since well-written programs do not depend on GID numbers,
but rather use the group's name.

To remove the “I have no name!” prompt, start a new shell. Since a full Glibc was installed in Chapter 5 and the
/ etc/ passwd and / etc/ group files have been created, user name and group name resolution will now work:

exec /tools/bin/bash --login +h

Note the use of the +h directive. This tells bash not to use its internal path hashing. Without this directive, bash
would remember the paths to binaries it has executed. To ensure the use of the newly compiled binaries as soon as
they are installed, the +h directive will be used for the duration of this chapter.

The login, agetty, and init programs (and others) use a number of log files to record information such as who was
logged into the system and when. However, these programs will not write to the log files if they do not already exist.
Initialize the log files and give them proper permissions:

touch /var/run/utmp /var/log/{btmp,lastlog,wtmp}
chgrp -v utmp /var/run/utmp /var/log/lastlog
chmod -v 664 /var/run/utmp /var/log/lastlog

The / var/ run/ utmp file records the users that are currently logged in. The / var/ log/ wtmp file records all
logins and logouts. The / var/ log/ lastlog file records when each user last logged in. The / var/ log/ btmp
file records the bad login attempts.

http://www.linuxbase.org

Linux From Scratch - Version 6.8

81

6.7. Linux-2.6.37 API Headers
The Linux API Headers expose the kernel's API for use by Glibc.

Approximate build time: 0.1 SBU
Required disk space: 485 MB

6.7.1. Installation of Linux API Headers
The Linux kernel needs to expose an Application Programming Interface (API) for the system's C library (Glibc in
LFS) to use. This is done by way of sanitizing various C header files that are shipped in the Linux kernel source tarball.

Make sure there are no stale files and dependencies lying around from previous activity:

make mrproper

Now test and extract the user-visible kernel headers from the source. They are placed in an intermediate local directory
and copied to the needed location because the extraction process removes any existing files in the target directory.
There are also some hidden files used by the kernel developers and not needed by LFS that are removed from the
intermediate directory.

make headers_check
make INSTALL_HDR_PATH=dest headers_install
find dest/include \(-name .install -o -name ..install.cmd \) -delete
cp -rv dest/include/* /usr/include

6.7.2. Contents of Linux API Headers
Installed headers: /usr/include/asm/*.h, /usr/include/asm-generic/*.h, /usr/include/drm/*.h,

/usr/include/linux/*.h, /usr/include/mtd/*.h, /usr/include/rdma/*.h,
/usr/include/scsi/*.h, /usr/include/sound/*.h, /usr/include/video/*.h,
/usr/include/xen/*.h

Installed directories: /usr/include/asm, /usr/include/asm-generic, /usr/include/drm, /usr/include/linux,
/usr/include/mtd, /usr/include/rdma, /usr/include/scsi, /usr/include/sound,
/usr/include/video, /usr/include/xen

Short Descriptions

/usr/include/asm/*.h The Linux API ASM Headers

/usr/include/asm-generic/*.h The Linux API ASM Generic Headers

/usr/include/drm/*.h The Linux API DRM Headers

/usr/include/linux/*.h The Linux API Linux Headers

/usr/include/mtd/*.h The Linux API MTD Headers

/usr/include/rdma/*.h The Linux API RDMA Headers

/usr/include/scsi/*.h The Linux API SCSI Headers

/usr/include/sound/*.h The Linux API Sound Headers

/usr/include/video/*.h The Linux API Video Headers

/usr/include/xen/*.h The Linux API Xen Headers

Linux From Scratch - Version 6.8

82

6.8. Man-pages-3.32
The Man-pages package contains over 1,900 man pages.

Approximate build time: less than 0.1 SBU
Required disk space: 21 MB

6.8.1. Installation of Man-pages
Install Man-pages by running:

make install

6.8.2. Contents of Man-pages
Installed files: various man pages

Short Descriptions

man pages Describe C programming language functions, important device files, and significant configuration
files

Linux From Scratch - Version 6.8

83

6.9. Glibc-2.13
The Glibc package contains the main C library. This library provides the basic routines for allocating memory,
searching directories, opening and closing files, reading and writing files, string handling, pattern matching,
arithmetic, and so on.

Approximate build time: 16.9 SBU
Required disk space: 637 MB

6.9.1. Installation of Glibc

Note

Some packages outside of LFS suggest installing GNU libiconv in order to translate data from one encoding
to another. The project's home page (http:// www. gnu. org/ software/ libiconv/) says “This library provides
an iconv() implementation, for use on systems which don't have one, or whose implementation cannot
convert from/to Unicode.” Glibc provides an iconv() implementation and can convert from/to Unicode,
therefore libiconv is not required on an LFS system.

The Glibc build system is self-contained and will install perfectly, even though the compiler specs file and linker are
still pointing at / tools. The specs and linker cannot be adjusted before the Glibc install because the Glibc autoconf
tests would give false results and defeat the goal of achieving a clean build.

When running make install, a script called test- installation. pl performs a small sanity test on our newly
installed Glibc. However, because our toolchain still points to the / tools directory, the sanity test would be carried
out against the wrong Glibc. We can force the script to check the Glibc we have just installed with the following:

DL=$(readelf -l /bin/sh | sed -n 's@.*interpret.*/tools\(.*\)]$@\1@p')
sed -i "s|libs -o|libs -L/usr/lib -Wl,-dynamic-linker=$DL -o|" \
 scripts/test-installation.pl
unset DL

In addition, there is a bug in the test- installation. pl script in that it tries to link a test program to a library
that isn't installed by make install. Issue the following sed command to fix it:

sed -i -e 's/"db1"/& \&\& $name ne "nss_test1"/' scripts/test-installation.pl

The ldd shell script contains Bash-specific syntax. Change its default program interpreter to /bin/bash in case another
/bin/sh is installed as described in the Shells chapter of the BLFS book:

sed -i 's|@BASH@|/bin/bash|' elf/ldd.bash.in

Fix a bug that prevents Glibc from building with GCC-4.5.2:

patch -Np1 -i ../glibc-2.13-gcc_fix-1.patch

Fix a stack imbalance that occurs under some conditions:

sed -i '195,213 s/PRIVATE_FUTEX/FUTEX_CLOCK_REALTIME/' \
nptl/sysdeps/unix/sysv/linux/x86_64/pthread_rwlock_timed{rd,wr}lock.S

http://www.gnu.org/software/libiconv/
http://www.linuxfromscratch.org/blfs/view/svn/postlfs/shells.html

Linux From Scratch - Version 6.8

84

The Glibc documentation recommends building Glibc outside of the source directory in a dedicated build directory:

mkdir -v ../glibc-build
cd ../glibc-build

As in Chapter 5, add the needed compiler flags to CFLAGS for x86 machines. Here, the optimization of the library
is also set for the gcc compiler to enhance compilation speed (-pipe) and package performance (-O3).

case `uname -m` in
 i?86) echo "CFLAGS += -march=i486 -mtune=native -O3 -pipe" > configparms ;;
esac

Prepare Glibc for compilation:

../glibc-2.13/configure --prefix=/usr \
 --disable-profile --enable-add-ons \
 --enable-kernel=2.6.22.5 --libexecdir=/usr/lib/glibc

The meaning of the new configure options:

--libexecdir=/usr/lib/glibc
This changes the location of the pt_chown program from its default of / usr/ libexec to
/ usr/ lib/ glibc.

Compile the package:

make

Important

In this section, the test suite for Glibc is considered critical. Do not skip it under any circumstance.

Before running the tests, copy a file from the source tree into our build tree to prevent a couple of test failures, then
test the results:

cp -v ../glibc-2.13/iconvdata/gconv-modules iconvdata
make -k check 2>&1 | tee glibc-check-log
grep Error glibc-check-log

You will probably see an expected (ignored) failure in the posix/annexc test. In addition the Glibc test suite is
somewhat dependent on the host system. This is a list of the most common issues:

• The nptl/tst-clock2, nptl/tst-attr3, and rt/tst-cpuclock2 tests have been known to fail. The reason is not
completely understood, but indications are that minor timing issues can trigger these failures.

• The math tests sometimes fail when running on systems where the CPU is not a relatively new genuine Intel or
authentic AMD processor.

• If you have mounted the LFS partition with the noatime option, the atime test will fail. As mentioned in
Section 2.4, “Mounting the New Partition”, do not use the noatime option while building LFS.

• When running on older and slower hardware or on systems under load, some tests can fail because of test
timeouts being exceeded. Modifying the make check command to set a TIMEOUTFACTOR is reported to help
eliminate these errors (e.g. TIMEOUTFACTOR=16 make -k check).

Linux From Scratch - Version 6.8

85

Though it is a harmless message, the install stage of Glibc will complain about the absence of / etc/ ld. so. conf.
Prevent this warning with:

touch /etc/ld.so.conf

Install the package:

make install

The locales that can make the system respond in a different language were not installed by the above command. None
of the locales are required, but if some of them are missing, test suites of the future packages would skip important
testcases.

Individual locales can be installed using the localedef program. E.g., the first localedef command
below combines the / usr/ share/ i18n/ locales/ cs_ CZ charset-independent locale definition with
the / usr/ share/ i18n/ charmaps/ UTF- 8. gz charmap definition and appends the result to the
/ usr/ lib/ locale/ locale- archive file. The following instructions will install the minimum set of locales
necessary for the optimal coverage of tests:

mkdir -pv /usr/lib/locale
localedef -i cs_CZ -f UTF-8 cs_CZ.UTF-8
localedef -i de_DE -f ISO-8859-1 de_DE
localedef -i de_DE@euro -f ISO-8859-15 de_DE@euro
localedef -i de_DE -f UTF-8 de_DE.UTF-8
localedef -i en_HK -f ISO-8859-1 en_HK
localedef -i en_PH -f ISO-8859-1 en_PH
localedef -i en_US -f ISO-8859-1 en_US
localedef -i en_US -f UTF-8 en_US.UTF-8
localedef -i es_MX -f ISO-8859-1 es_MX
localedef -i fa_IR -f UTF-8 fa_IR
localedef -i fr_FR -f ISO-8859-1 fr_FR
localedef -i fr_FR@euro -f ISO-8859-15 fr_FR@euro
localedef -i fr_FR -f UTF-8 fr_FR.UTF-8
localedef -i it_IT -f ISO-8859-1 it_IT
localedef -i ja_JP -f EUC-JP ja_JP
localedef -i tr_TR -f UTF-8 tr_TR.UTF-8
localedef -i zh_CN -f GB18030 zh_CN.GB18030

In addition, install the locale for your own country, language and character set.

Alternatively, install all locales listed in the glibc- 2. 13/ localedata/ SUPPORTED file (it includes every
locale listed above and many more) at once with the following time-consuming command:

make localedata/install-locales

Then use the localedef command to create and install locales not listed in the glibc- 2.
13/ localedata/ SUPPORTED file in the unlikely case you need them.

6.9.2. Configuring Glibc
The / etc/ nsswitch. conf file needs to be created because, although Glibc provides defaults when this file is
missing or corrupt, the Glibc defaults do not work well in a networked environment. The time zone also needs to
be configured.

Linux From Scratch - Version 6.8

86

Create a new file / etc/ nsswitch. conf by running the following:

cat > /etc/nsswitch.conf << "EOF"
Begin /etc/nsswitch.conf

passwd: files
group: files
shadow: files

hosts: files dns
networks: files

protocols: files
services: files
ethers: files
rpc: files

End /etc/nsswitch.conf
EOF

One way to determine the local time zone, run the following script:

tzselect

After answering a few questions about the location, the script will output the name of the time zone (e.g.,
America/Edmonton). There are also some other possible timezones listed in / usr/ share/ zoneinfo such as
Canada/Eastern or EST5EDT that are not identified by the script but can be used.

Then create the / etc/ localtime file by running:

cp -v --remove-destination /usr/share/zoneinfo/<xxx> \
 /etc/localtime

Replace <xxx> with the name of the time zone selected (e.g., Canada/Eastern).

The meaning of the cp option:

--remove-destination

This is needed to force removal of the already existing symbolic link. The reason for copying the file instead of
using a symlink is to cover the situation where / usr is on a separate partition. This could be important when
booted into single user mode.

6.9.3. Configuring the Dynamic Loader

By default, the dynamic loader (/ lib/ ld- linux. so. 2) searches through / lib and / usr/ lib for dynamic
libraries that are needed by programs as they are run. However, if there are libraries in directories other than / lib
and / usr/ lib, these need to be added to the / etc/ ld. so. conf file in order for the dynamic loader to find them.
Two directories that are commonly known to contain additional libraries are / usr/ local/ lib and / opt/ lib,
so add those directories to the dynamic loader's search path.

Linux From Scratch - Version 6.8

87

Create a new file / etc/ ld. so. conf by running the following:

cat > /etc/ld.so.conf << "EOF"
Begin /etc/ld.so.conf

/usr/local/lib
/opt/lib

End /etc/ld.so.conf
EOF

6.9.4. Contents of Glibc
Installed programs: catchsegv, gencat, getconf, getent, iconv, iconvconfig, ldconfig, ldd, lddlibc4, locale,

localedef, mtrace, nscd, pcprofiledump, pt_chown, rpcgen, rpcinfo, sln, sprof, tzselect,
xtrace, zdump, and zic

Installed libraries: ld.so, libBrokenLocale.{a,so}, libSegFault.so, libanl.{a,so}, libbsd-compat.a,
libc.{a,so}, libc_nonshared.a, libcidn.so, libcrypt.{a,so}, libdl.{a,so}, libg.a,
libieee.a, libm.{a,so}, libmcheck.a, libmemusage.so, libnsl.{a,so}, libnss_compat.so,
libnss_dns.so, libnss_files.so, libnss_hesiod.so, libnss_nis.so, libnss_nisplus.so,
libpcprofile.so, libpthread.{a,so}, libpthread_nonshared.a, libresolv.{a,so},
librpcsvc.a, librt.{a,so}, libthread_db.so, and libutil.{a,so}

Installed directories: /usr/include/arpa, /usr/include/bits, /usr/include/gnu, /usr/include/net,
/usr/include/netash, /usr/include/netatalk, /usr/include/netax25, /usr/include/neteconet,
/usr/include/netinet, /usr/include/netipx, /usr/include/netiucv, /usr/include/netpacket,
/usr/include/netrom, /usr/include/netrose, /usr/include/nfs, /usr/include/protocols,
/usr/include/rpc, /usr/include/rpcsvc, /usr/include/sys, /usr/lib/gconv, /usr/lib/glibc,
/usr/lib/locale, /usr/share/i18n, /usr/share/zoneinfo

Short Descriptions

catchsegv Can be used to create a stack trace when a program terminates with a segmentation fault

gencat Generates message catalogues

getconf Displays the system configuration values for file system specific variables

getent Gets entries from an administrative database

iconv Performs character set conversion

iconvconfig Creates fastloading iconv module configuration files

ldconfig Configures the dynamic linker runtime bindings

ldd Reports which shared libraries are required by each given program or shared library

lddlibc4 Assists ldd with object files

locale Prints various information about the current locale

localedef Compiles locale specifications

mtrace Reads and interprets a memory trace file and displays a summary in human-readable format

nscd A daemon that provides a cache for the most common name service requests

pcprofiledump Dumps information generated by PC profiling

Linux From Scratch - Version 6.8

88

pt_chown A helper program for grantpt to set the owner, group and access permissions of a slave
pseudo terminal

rpcgen Generates C code to implement the Remote Procedure Call (RPC) protocol

rpcinfo Makes an RPC call to an RPC server

sln A statically linked ln program

sprof Reads and displays shared object profiling data

tzselect Asks the user about the location of the system and reports the corresponding time zone
description

xtrace Traces the execution of a program by printing the currently executed function

zdump The time zone dumper

zic The time zone compiler

ld.so The helper program for shared library executables

libBrokenLocale Used internally by Glibc as a gross hack to get broken programs (e.g., some Motif
applications) running. See comments in glibc- 2. 13/ locale/ broken_ cur_ max. c
for more information

libSegFault The segmentation fault signal handler, used by catchsegv

libanl An asynchronous name lookup library

libbsd-compat Provides the portability needed in order to run certain Berkeley Software Distribution (BSD)
programs under Linux

libc The main C library

libcidn Used internally by Glibc for handling internationalized domain names in the
getaddrinfo() function

libcrypt The cryptography library

libdl The dynamic linking interface library

libg Dummy library containing no functions. Previously was a runtime library for g++

libieee Linking in this module forces error handling rules for math functions as defined by the
Institute of Electrical and Electronic Engineers (IEEE). The default is POSIX.1 error
handling

libm The mathematical library

libmcheck Turns on memory allocation checking when linked to

libmemusage Used by memusage to help collect information about the memory usage of a program

libnsl The network services library

libnss The Name Service Switch libraries, containing functions for resolving host names, user
names, group names, aliases, services, protocols, etc.

libpcprofile Contains profiling functions used to track the amount of CPU time spent in specific source
code lines

libpthread The POSIX threads library

libresolv Contains functions for creating, sending, and interpreting packets to the Internet domain
name servers

Linux From Scratch - Version 6.8

89

librpcsvc Contains functions providing miscellaneous RPC services

librt Contains functions providing most of the interfaces specified by the POSIX.1b Realtime
Extension

libthread_db Contains functions useful for building debuggers for multi-threaded programs

libutil Contains code for “standard” functions used in many different Unix utilities

Linux From Scratch - Version 6.8

90

6.10. Re-adjusting the Toolchain
Now that the final C libraries have been installed, it is time to adjust the toolchain again. The toolchain will be
adjusted so that it will link any newly compiled program against these new libraries. This is a similar process used
in the “Adjusting” phase in the beginning of Chapter 5, but with the adjustments reversed. In Chapter 5, the chain
was guided from the host's / {,usr/ }lib directories to the new / tools/ lib directory. Now, the chain will be
guided from that same / tools/ lib directory to the LFS / {,usr/ }lib directories.

First, backup the / tools linker, and replace it with the adjusted linker we made in chapter 5. We'll also create a
link to its counterpart in / tools/ $(gcc - dumpmachine)/ bin:

mv -v /tools/bin/{ld,ld-old}
mv -v /tools/$(gcc -dumpmachine)/bin/{ld,ld-old}
mv -v /tools/bin/{ld-new,ld}
ln -sv /tools/bin/ld /tools/$(gcc -dumpmachine)/bin/ld

Next, amend the GCC specs file so that it points to the new dynamic linker. Simply deleting all instances of “/tools”
should leave us with the correct path to the dynamic linker. Also adjust the specs file so that GCC knows where to
find the correct headers and Glibc start files. A sed command accomplishes this:

gcc -dumpspecs | sed -e 's@/tools@@g' \
 -e '/*startfile_prefix_spec:/{n;s@.*@/usr/lib/ @}' \
 -e '/*cpp:/{n;s@$@ -isystem /usr/include@}' > \
 `dirname $(gcc --print-libgcc-file-name)`/specs

It is a good idea to visually inspect the specs file to verify the intended change was actually made.

It is imperative at this point to ensure that the basic functions (compiling and linking) of the adjusted toolchain are
working as expected. To do this, perform the following sanity checks:

echo 'main(){}' > dummy.c
cc dummy.c -v -Wl,--verbose &> dummy.log
readelf -l a.out | grep ': /lib'

If everything is working correctly, there should be no errors, and the output of the last command will be (allowing
for platform-specific differences in dynamic linker name):

[Requesting program interpreter: /lib/ld-linux.so.2]

Note that / lib is now the prefix of our dynamic linker.

Now make sure that we're setup to use the correct startfiles:

grep -o '/usr/lib.*/crt[1in].*succeeded' dummy.log

If everything is working correctly, there should be no errors, and the output of the last command will be:

/usr/lib/crt1.o succeeded
/usr/lib/crti.o succeeded
/usr/lib/crtn.o succeeded

Verify that the compiler is searching for the correct header files:

grep -B1 '^ /usr/include' dummy.log

Linux From Scratch - Version 6.8

91

This command should return successfully with the following output:

#include <...> search starts here:
 /usr/include

Next, verify that the new linker is being used with the correct search paths:

grep 'SEARCH.*/usr/lib' dummy.log |sed 's|; |\n|g'

If everything is working correctly, there should be no errors, and the output of the last command (allowing for
platform-specific target triplets) will be:

SEARCH_DIR("/tools/i686-pc-linux-gnu/lib")
SEARCH_DIR("/usr/lib")
SEARCH_DIR("/lib");

Next make sure that we're using the correct libc:

grep "/lib.*/libc.so.6 " dummy.log

If everything is working correctly, there should be no errors, and the output of the last command (allowing for a lib64
directory on 64-bit hosts) will be:

attempt to open /lib/libc.so.6 succeeded

Lastly, make sure GCC is using the correct dynamic linker:

grep found dummy.log

If everything is working correctly, there should be no errors, and the output of the last command will be (allowing
for platform-specific differences in dynamic linker name and a lib64 directory on 64-bit hosts):

found ld-linux.so.2 at /lib/ld-linux.so.2

If the output does not appear as shown above or is not received at all, then something is seriously wrong. Investigate
and retrace the steps to find out where the problem is and correct it. The most likely reason is that something went
wrong with the specs file adjustment. Any issues will need to be resolved before continuing on with the process.

Once everything is working correctly, clean up the test files:

rm -v dummy.c a.out dummy.log

Linux From Scratch - Version 6.8

92

6.11. Zlib-1.2.5
The Zlib package contains compression and decompression routines used by some programs.

Approximate build time: less than 0.1 SBU
Required disk space: 2.8 MB

6.11.1. Installation of Zlib
First, fix a typo in the package header file:

sed -i 's/ifdef _LARGEFILE64_SOURCE/ifndef _LARGEFILE64_SOURCE/' zlib.h

Prepare Zlib for compilation:

CFLAGS='-mstackrealign -fPIC -O3' ./configure --prefix=/usr

The meaning of the new configure environment variable:

CFLAGS='-mstackrealign -fPIC -O3'
Setting CFLAGS overrides the default optimization in the package to prevent some run time errors. Note that
the -mstackrealign may cause build failures in non-Intel architecture systems.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

The shared library needs to be moved to / lib, and as a result the . so file in / usr/ lib will need to be recreated:

mv -v /usr/lib/libz.so.* /lib
ln -sfv ../../lib/libz.so.1.2.5 /usr/lib/libz.so

6.11.2. Contents of Zlib
Installed libraries: libz.{a,so}

Short Descriptions

libz Contains compression and decompression functions used by some programs

Linux From Scratch - Version 6.8

93

6.12. Binutils-2.21
The Binutils package contains a linker, an assembler, and other tools for handling object files.

Approximate build time: 2.1 SBU
Required disk space: 222 MB

6.12.1. Installation of Binutils
Verify that the PTYs are working properly inside the chroot environment by performing a simple test:

expect -c "spawn ls"

This command should output the following:

spawn ls

If, instead, the output includes the message below, then the environment is not set up for proper PTY operation. This
issue needs to be resolved before running the test suites for Binutils and GCC:

The system has no more ptys.
Ask your system administrator to create more.

Suppress the installation of an outdated standards. info file as a newer one is installed later on in the Autoconf
instructions:

rm -fv etc/standards.info
sed -i.bak '/^INFO/s/standards.info //' etc/Makefile.in

The Binutils documentation recommends building Binutils outside of the source directory in a dedicated build
directory:

mkdir -v ../binutils-build
cd ../binutils-build

Prepare Binutils for compilation:

../binutils-2.21/configure --prefix=/usr \
 --enable-shared

Compile the package:

make tooldir=/usr

The meaning of the make parameter:

tooldir=/usr
Normally, the tooldir (the directory where the executables will ultimately be located) is set to $(exec_
prefix)/ $(target_ alias). For example, x86_64 machines would expand that to / usr/ x86_
64- unknown- linux- gnu. Because this is a custom system, this target-specific directory in / usr is not
required. $(exec_ prefix)/ $(target_ alias) would be used if the system was used to cross-compile
(for example, compiling a package on an Intel machine that generates code that can be executed on PowerPC
machines).

Linux From Scratch - Version 6.8

94

Important

The test suite for Binutils in this section is considered critical. Do not skip it under any circumstances.

Test the results:

make check

Install the package:

make tooldir=/usr install

Install the libiberty header file that is needed by some packages:

cp -v ../binutils-2.21/include/libiberty.h /usr/include

6.12.2. Contents of Binutils
Installed programs: addr2line, ar, as, c++filt, gprof, ld, nm, objcopy, objdump, ranlib, readelf, size, strings,

and strip
Installed libraries: libiberty.a, libbfd.{a,so}, and libopcodes.{a,so}
Installed directory: /usr/lib/ldscripts

Short Descriptions

addr2line Translates program addresses to file names and line numbers; given an address and the name of an
executable, it uses the debugging information in the executable to determine which source file and
line number are associated with the address

ar Creates, modifies, and extracts from archives

as An assembler that assembles the output of gcc into object files

c++filt Used by the linker to de-mangle C++ and Java symbols and to keep overloaded functions from
clashing

gprof Displays call graph profile data

ld A linker that combines a number of object and archive files into a single file, relocating their data
and tying up symbol references

nm Lists the symbols occurring in a given object file

objcopy Translates one type of object file into another

objdump Displays information about the given object file, with options controlling the particular information
to display; the information shown is useful to programmers who are working on the compilation
tools

ranlib Generates an index of the contents of an archive and stores it in the archive; the index lists all of the
symbols defined by archive members that are relocatable object files

readelf Displays information about ELF type binaries

size Lists the section sizes and the total size for the given object files

strings Outputs, for each given file, the sequences of printable characters that are of at least the specified
length (defaulting to four); for object files, it prints, by default, only the strings from the initializing
and loading sections while for other types of files, it scans the entire file

Linux From Scratch - Version 6.8

95

strip Discards symbols from object files

libiberty Contains routines used by various GNU programs, including getopt, obstack, strerror, strtol, and
strtoul

libbfd The Binary File Descriptor library

libopcodes A library for dealing with opcodes—the “readable text” versions of instructions for the processor;
it is used for building utilities like objdump.

Linux From Scratch - Version 6.8

96

6.13. GMP-5.0.1
The GMP package contains math libraries. These have useful functions for arbitrary precision arithmetic.

Approximate build time: 1.7 SBU
Required disk space: 39 MB

6.13.1. Installation of GMP

Note

If you are building for 32-bit x86, but you have a CPU which is capable of running 64-bit code and you
have specified CFLAGS in the environment, the configure script will attempt to configure for 64-bits and
fail. Avoid this by invoking the configure command below with

ABI=32 ./configure ...

Prepare GMP for compilation:

./configure --prefix=/usr --enable-cxx --enable-mpbsd

The meaning of the new configure options:

--enable-cxx
This parameter enables C++ support

--enable-mpbsd
This builds the Berkeley MP compatibility library

Compile the package:

make

Important

The test suite for GMP in this section is considered critical. Do not skip it under any circumstances.

Test the results:

make check 2>&1 | tee gmp-check-log

Ensure that all 162 tests in the test suite passed. Check the results by issuing the following command:

awk '/tests passed/{total+=$2} ; END{print total}' gmp-check-log

Install the package:

make install

If desired, install the documentation:

mkdir -v /usr/share/doc/gmp-5.0.1
cp -v doc/{isa_abi_headache,configuration} doc/*.html \
 /usr/share/doc/gmp-5.0.1

Linux From Scratch - Version 6.8

97

6.13.2. Contents of GMP
Installed Libraries: libgmp.{a,so}, libgmpxx.{a,so}, and libmp.{a,so}
Installed directory: /usr/share/doc/gmp-5.0.1

Short Descriptions

libgmp Contains precision math functions.

libgmpxx Contains C++ precision math functions.

libmp Contains the Berkeley MP math functions.

Linux From Scratch - Version 6.8

98

6.14. MPFR-3.0.0
The MPFR package contains functions for multiple precision math.

Approximate build time: 1.1 SBU
Required disk space: 27.1 MB

6.14.1. Installation of MPFR
Prepare MPFR for compilation:

./configure --prefix=/usr --enable-thread-safe \
 --docdir=/usr/share/doc/mpfr-3.0.0

Compile the package:

make

Important

The test suite for MPFR in this section is considered critical. Do not skip it under any circumstances.

Test the results and ensure that all tests passed:

make check

Install the package:

make install

Install the documentation:

make html
make install-html

6.14.2. Contents of MPFR
Installed Libraries: libmpfr.{a,so}
Installed directory: /usr/share/doc/mpfr-3.0.0

Short Descriptions

libmpfr Contains multiple-precision math functions.

Linux From Scratch - Version 6.8

99

6.15. MPC-0.8.2
The MPC package contains a library for the arithmetic of complex numbers with arbitrarily high precision and correct
rounding of the result.

Approximate build time: 0.3 SBU
Required disk space: 10.5 MB

6.15.1. Installation of MPC
Prepare MPC for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

6.15.2. Contents of MPC
Installed Libraries: libmpc.{a,so}

Short Descriptions

libmpc Contains complex math functions

Linux From Scratch - Version 6.8

100

6.16. GCC-4.5.2
The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

Approximate build time: 44 SBU
Required disk space: 1.1 GB

6.16.1. Installation of GCC

Apply a sed substitution that will suppress the installation of libiberty. a. The version of libiberty. a
provided by Binutils will be used instead:

sed -i 's/install_to_$(INSTALL_DEST) //' libiberty/Makefile.in

As in Section 5.10, “GCC-4.5.2 - Pass 2”, apply the following sed to force the build to use the
- fomit- frame- pointer compiler flag in order to ensure consistent compiler builds:

case `uname -m` in
 i?86) sed -i 's/^T_CFLAGS =$/& -fomit-frame-pointer/' \
 gcc/Makefile.in ;;
esac

The fixincludes script is known to occasionally erroneously attempt to "fix" the system headers installed so far. As
the headers up to this point are known to not require fixing, issue the following command to prevent the fixincludes
script from running:

sed -i 's@\./fixinc\.sh@-c true@' gcc/Makefile.in

The GCC documentation recommends building GCC outside of the source directory in a dedicated build directory:

mkdir -v ../gcc-build
cd ../gcc-build

Prepare GCC for compilation:

../gcc-4.5.2/configure --prefix=/usr \
 --libexecdir=/usr/lib --enable-shared \
 --enable-threads=posix --enable-__cxa_atexit \
 --enable-clocale=gnu --enable-languages=c,c++ \
 --disable-multilib --disable-bootstrap --with-system-zlib

Note that for other languages, there are some prerequisites that are not available. See the BLFS Book for instructions
on how to build all the GCC supported languages.

The meaning of the new configure option:

--with-system-zlib

This switch tells GCC to link to the system installed copy of the Zlib library, rather than its own internal copy.

Compile the package:

make

Linux From Scratch - Version 6.8

101

Important

In this section, the test suite for GCC is considered critical. Do not skip it under any circumstance.

One set of tests in the GCC test suite is known to exhaust the stack, so increase the stack size prior to running the tests:

ulimit -s 16384

Test the results, but do not stop at errors:

make -k check

To receive a summary of the test suite results, run:

../gcc-4.5.2/contrib/test_summary

For only the summaries, pipe the output through grep -A7 Summ.

Results can be compared with those located at http:// www. linuxfromscratch. org/ lfs/ build- logs/ 6. 8/ and http:// gcc. gnu.
org/ ml/ gcc- testresults/.

A few unexpected failures cannot always be avoided. The GCC developers are usually aware of these issues, but have
not resolved them yet. In particular, the libmudflap tests are known be particularly problematic as a result of a
bug in GCC (http:// gcc. gnu. org/ bugzilla/ show_ bug. cgi?id=20003). Unless the test results are vastly different from
those at the above URL, it is safe to continue.

Install the package:

make install

Some packages expect the C preprocessor to be installed in the / lib directory. To support those packages, create
this symlink:

ln -sv ../usr/bin/cpp /lib

Many packages use the name cc to call the C compiler. To satisfy those packages, create a symlink:

ln -sv gcc /usr/bin/cc

Now that our final toolchain is in place, it is important to again ensure that compiling and linking will work as
expected. We do this by performing the same sanity checks as we did earlier in the chapter:

echo 'main(){}' > dummy.c
cc dummy.c -v -Wl,--verbose &> dummy.log
readelf -l a.out | grep ': /lib'

If everything is working correctly, there should be no errors, and the output of the last command will be (allowing
for platform-specific differences in dynamic linker name):

[Requesting program interpreter: /lib/ld-linux.so.2]

Now make sure that we're setup to use the correct startfiles:

grep -o '/usr/lib.*/crt[1in].*succeeded' dummy.log

http://www.linuxfromscratch.org/lfs/build-logs/6.8/
http://gcc.gnu.org/ml/gcc-testresults/
http://gcc.gnu.org/ml/gcc-testresults/
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=20003

Linux From Scratch - Version 6.8

102

If everything is working correctly, there should be no errors, and the output of the last command will be:

/usr/lib/gcc/i686-pc-linux-gnu/4.5.2/../../../crt1.o succeeded
/usr/lib/gcc/i686-pc-linux-gnu/4.5.2/../../../crti.o succeeded
/usr/lib/gcc/i686-pc-linux-gnu/4.5.2/../../../crtn.o succeeded

Depending on your machine architecture, the above may differ slightly, the difference usually being the name of the
directory after / usr/ lib/ gcc. If your machine is a 64-bit system, you may also see a directory named lib64
towards the end of the string. The important thing to look for here is that gcc has found all three crt*. o files under
the / usr/ lib directory.

Verify that the compiler is searching for the correct header files:

grep -B4 '^ /usr/include' dummy.log

This command should return successfully with the following output:

#include <...> search starts here:
 /usr/local/include
 /usr/lib/gcc/i686-pc-linux-gnu/4.5.2/include
 /usr/lib/gcc/i686-pc-linux-gnu/4.5.2/include-fixed
 /usr/include

Again, note that the directory named after your target triplet may be different than the above, depending on your
architecture.

Note

As of version 4.3.0, GCC now unconditionally installs the limits. h file into the private
include- fixed directory, and that directory is required to be in place.

Next, verify that the new linker is being used with the correct search paths:

grep 'SEARCH.*/usr/lib' dummy.log |sed 's|; |\n|g'

If everything is working correctly, there should be no errors, and the output of the last command (allowing for
platform-specific target triplets) will be:

SEARCH_DIR("/usr/i686-pc-linux-gnu/lib")
SEARCH_DIR("/usr/local/lib")
SEARCH_DIR("/lib")
SEARCH_DIR("/usr/lib");

A 64-bit system may see a few more directories. For example, here is the output from an x86_64 machine:

SEARCH_DIR("/usr/x86_64-unknown-linux-gnu/lib64")
SEARCH_DIR("/usr/local/lib64")
SEARCH_DIR("/lib64")
SEARCH_DIR("/usr/lib64")
SEARCH_DIR("/usr/x86_64-unknown-linux-gnu/lib")
SEARCH_DIR("/usr/local/lib")
SEARCH_DIR("/lib")
SEARCH_DIR("/usr/lib");

Linux From Scratch - Version 6.8

103

Next make sure that we're using the correct libc:

grep "/lib.*/libc.so.6 " dummy.log

If everything is working correctly, there should be no errors, and the output of the last command (allowing for a lib64
directory on 64-bit hosts) will be:

attempt to open /lib/libc.so.6 succeeded

Lastly, make sure GCC is using the correct dynamic linker:

grep found dummy.log

If everything is working correctly, there should be no errors, and the output of the last command will be (allowing
for platform-specific differences in dynamic linker name and a lib64 directory on 64-bit hosts):

found ld-linux.so.2 at /lib/ld-linux.so.2

If the output does not appear as shown above or is not received at all, then something is seriously wrong. Investigate
and retrace the steps to find out where the problem is and correct it. The most likely reason is that something went
wrong with the specs file adjustment. Any issues will need to be resolved before continuing on with the process.

Once everything is working correctly, clean up the test files:

rm -v dummy.c a.out dummy.log

6.16.2. Contents of GCC
Installed programs: c++, cc (link to gcc), cpp, g++, gcc, gccbug, and gcov
Installed libraries: libgcc.a, libgcc_eh.a, libgcc_s.so, libgcov.a, libgomp.{a,so}, libmudflap.{a,so},

libmudflapth.{a,so}, libssp.{a,so}, libssp_nonshared.a, libstdc++.{a,so} and
libsupc++.a

Installed directories: /usr/include/c++, /usr/lib/gcc, /usr/share/gcc-4.5.2

Short Descriptions

c++ The C++ compiler

cc The C compiler

cpp The C preprocessor; it is used by the compiler to expand the #include, #define, and similar
statements in the source files

g++ The C++ compiler

gcc The C compiler

gccbug A shell script used to help create useful bug reports

gcov A coverage testing tool; it is used to analyze programs to determine where optimizations will have
the most effect

libgcc Contains run-time support for gcc

libgcov This library is linked in to a program when GCC is instructed to enable profiling

libgomp GNU implementation of the OpenMP API for multi-platform shared-memory parallel programming
in C/C++ and Fortran

Linux From Scratch - Version 6.8

104

libmudflap Contains routines that support GCC's bounds checking functionality

libssp Contains routines supporting GCC's stack-smashing protection functionality

libstdc++ The standard C++ library

libsupc++ Provides supporting routines for the C++ programming language

Linux From Scratch - Version 6.8

105

6.17. Sed-4.2.1
The Sed package contains a stream editor.

Approximate build time: 0.2 SBU
Required disk space: 8.3 MB

6.17.1. Installation of Sed
Prepare Sed for compilation:

./configure --prefix=/usr --bindir=/bin --htmldir=/usr/share/doc/sed-4.2.1

The meaning of the new configure option:

--htmldir
This sets the directory where the HTML documentation will be installed to.

Compile the package:

make

Generate the HTML documentation:

make html

To test the results, issue:

make check

Install the package:

make install

Install the HTML documentation:

make -C doc install-html

6.17.2. Contents of Sed
Installed program: sed
Installed directory: /usr/share/doc/sed-4.2.1

Short Descriptions

sed Filters and transforms text files in a single pass

Linux From Scratch - Version 6.8

106

6.18. Pkg-config-0.25
The pkg-config package contains a tool for passing the include path and/or library paths to build tools during the
configure and make file execution.

Approximate build time: 0.3 SBU
Required disk space: 11.5 MB

6.18.1. Installation of Pkg-config

Note

Pkg-Config will use an included version of Popt to parse command line options. If an external version of
Popt is desired, install that version using the BLFS Popt build instructions before installing Pkg-config.

Prepare Pkg-config for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

6.18.2. Contents of Pkg-config
Installed program: pkg-config

Short Descriptions

pkg-config Returns meta information for the specified library or package.

http://www.linuxfromscratch.org/blfs/view/svn/general/popt.html

Linux From Scratch - Version 6.8

107

6.19. Ncurses-5.7
The Ncurses package contains libraries for terminal-independent handling of character screens.

Approximate build time: 0.8 SBU
Required disk space: 35 MB

6.19.1. Installation of Ncurses
Prepare Ncurses for compilation:

./configure --prefix=/usr --with-shared --without-debug --enable-widec

The meaning of the configure option:

--enable-widec
This switch causes wide-character libraries (e.g., libncursesw. so. 5. 7) to be built instead of normal ones
(e.g., libncurses. so. 5. 7). These wide-character libraries are usable in both multibyte and traditional 8-bit
locales, while normal libraries work properly only in 8-bit locales. Wide-character and normal libraries are
source-compatible, but not binary-compatible.

Compile the package:

make

This package has a test suite, but it can only be run after the package has been installed. The tests reside in the
test/ directory. See the README file in that directory for further details.

Install the package:

make install

Move the shared libraries to the / lib directory, where they are expected to reside:

mv -v /usr/lib/libncursesw.so.5* /lib

Because the libraries have been moved, one symlink points to a non-existent file. Recreate it:

ln -sfv ../../lib/libncursesw.so.5 /usr/lib/libncursesw.so

Many applications still expect the linker to be able to find non-wide-character Ncurses libraries. Trick such
applications into linking with wide-character libraries by means of symlinks and linker scripts:

for lib in ncurses form panel menu ; do \
 rm -vf /usr/lib/lib${lib}.so ; \
 echo "INPUT(-l${lib}w)" >/usr/lib/lib${lib}.so ; \
 ln -sfv lib${lib}w.a /usr/lib/lib${lib}.a ; \
done
ln -sfv libncurses++w.a /usr/lib/libncurses++.a

Finally, make sure that old applications that look for - lcurses at build time are still buildable:

rm -vf /usr/lib/libcursesw.so
echo "INPUT(-lncursesw)" >/usr/lib/libcursesw.so
ln -sfv libncurses.so /usr/lib/libcurses.so
ln -sfv libncursesw.a /usr/lib/libcursesw.a
ln -sfv libncurses.a /usr/lib/libcurses.a

Linux From Scratch - Version 6.8

108

If desired, install the Ncurses documentation:

mkdir -v /usr/share/doc/ncurses-5.7
cp -v -R doc/* /usr/share/doc/ncurses-5.7

Note

The instructions above don't create non-wide-character Ncurses libraries since no package installed by
compiling from sources would link against them at runtime. If you must have such libraries because of some
binary-only application or to be compliant with LSB, build the package again with the following commands:

make distclean
./configure --prefix=/usr --with-shared --without-normal \
 --without-debug --without-cxx-binding
make sources libs
cp -av lib/lib*.so.5* /usr/lib

6.19.2. Contents of Ncurses
Installed programs: captoinfo (link to tic), clear, infocmp, infotocap (link to tic), ncursesw5-config, reset

(link to tset), tic, toe, tput, and tset
Installed libraries: libcursesw.{a,so} (symlink and linker script to libncursesw.{a,so}), libformw.{a,so},

libmenuw.{a,so}, libncurses++w.a, libncursesw.{a,so}, libpanelw.{a,so} and their
non-wide-character counterparts without "w" in the library names.

Installed directories: /usr/share/tabset, /usr/share/terminfo

Short Descriptions

captoinfo Converts a termcap description into a terminfo description

clear Clears the screen, if possible

infocmp Compares or prints out terminfo descriptions

infotocap Converts a terminfo description into a termcap description

ncursesw5-config Provides configuration information for ncurses

reset Reinitializes a terminal to its default values

tic The terminfo entry-description compiler that translates a terminfo file from source format
into the binary format needed for the ncurses library routines. A terminfo file contains
information on the capabilities of a certain terminal

toe Lists all available terminal types, giving the primary name and description for each

tput Makes the values of terminal-dependent capabilities available to the shell; it can also be
used to reset or initialize a terminal or report its long name

tset Can be used to initialize terminals

libcurses A link to libncurses

libncurses Contains functions to display text in many complex ways on a terminal screen; a good
example of the use of these functions is the menu displayed during the kernel's make
menuconfig

Linux From Scratch - Version 6.8

109

libform Contains functions to implement forms

libmenu Contains functions to implement menus

libpanel Contains functions to implement panels

Linux From Scratch - Version 6.8

110

6.20. Util-linux-2.19
The Util-linux package contains miscellaneous utility programs. Among them are utilities for handling file systems,
consoles, partitions, and messages.

Approximate build time: 0.6 SBU
Required disk space: 50 MB

6.20.1. FHS compliance notes
The FHS recommends using the / var/ lib/ hwclock directory instead of the usual / etc directory as the location
for the adjtime file. To make the hwclock program FHS-compliant, run the following:

sed -e 's@etc/adjtime@var/lib/hwclock/adjtime@g' \
 -i $(grep -rl '/etc/adjtime' .)
mkdir -pv /var/lib/hwclock

6.20.2. Installation of Util-linux

./configure --enable-arch --enable-partx --enable-write

The meaning of the configure options:

--enable-arch
Enables building the arch program

--enable-partx
Enables building the addpart, delpart and partx programs

--enable-write
Enables building the write program

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

6.20.3. Contents of Util-linux
Installed programs: addpart, agetty, arch, blkid, blockdev, cal, cfdisk, chkdupexe, chrt, col, colcrt, colrm,

column, ctrlaltdel, cytune, ddate, delpart, dmesg, fallocate, fdformat, fdisk, findfs,
findmnt, flock, fsck, fsck.cramfs, fsck.minix, fsfreeze, fstrim, getopt, hexdump,
hwclock, i386, ionice, ipcmk, ipcrm, ipcs, isosize, ldattach, line, linux32, linux64,
logger, look, losetup, lsblk, lscpu, mcookie, mkfs, mkfs.bfs, mkfs.cramfs, mkfs.minix,
mkswap, more, mount, namei, partx, pg, pivot_root, readprofile, rename, renice, rev,
rtcwake, script, scriptreplay, setarch, setsid, setterm, sfdisk, swaplabel, swapoff (link
to swapon), swapon, switch_root, tailf, taskset, tunelp, ul, umount, unshare, uuidd,
uuidgen, wall, whereis, wipefs, and write

Installed libraries: libblkid.{a,so}, libmount.{a,so}, libuuid.{a,so}
Installed directories: /usr/share/getopt, /var/lib/hwclock

Linux From Scratch - Version 6.8

111

Short Descriptions

addpart Informs the Linux kernel of new partitions

agetty Opens a tty port, prompts for a login name, and then invokes the login program

arch Reports the machine's architecture

blkid A command line utility to locate and print block device attributes

blockdev Allows users to call block device ioctls from the command line

cal Displays a simple calendar

cfdisk Manipulates the partition table of the given device

chkdupexe Finds duplicate executables

chrt Manipulates real-time attributes of a process

col Filters out reverse line feeds

colcrt Filters nroff output for terminals that lack some capabilities, such as overstriking and half-lines

colrm Filters out the given columns

column Formats a given file into multiple columns

ctrlaltdel Sets the function of the Ctrl+Alt+Del key combination to a hard or a soft reset

cytune Tunes the parameters of the serial line drivers for Cyclades cards

ddate Gives the Discordian date or converts the given Gregorian date to a Discordian one

delpart Asks the Linux kernel to remove a partition

dmesg Dumps the kernel boot messages

fallocate Preallocates space to a file

fdformat Low-level formats a floppy disk

fdisk Manipulates the paritition table of the given device

findfs Finds a file system by label or Universally Unique Identifier (UUID)

findmnt Is a command line interface to the libmount library for work with mountinfo, fstab and mtab files

flock Acquires a file lock and then executes a command with the lock held

fsck Is used to check, and optionally repair, file systems

fsck.cramfs Performs a consistency check on the Cramfs file system on the given device

fsck.minix Performs a consistency check on the Minix file system on the given device

fsfreeze Is a very simple wrapper around FIFREEZE/FITHAW ioctl kernel driver operations

fstrim Discards unused blocks on a mounted filesystem

getopt Parses options in the given command line

hexdump Dumps the given file in hexadecimal or in another given format

hwclock Reads or sets the system's hardware clock, also called the Real-Time Clock (RTC) or Basic
Input-Output System (BIOS) clock

i386 A symbolic link to setarch

ionice Gets or sets the io scheduling class and priority for a program

Linux From Scratch - Version 6.8

112

ipcmk Creates various IPC resources

ipcrm Removes the given Inter-Process Communication (IPC) resource

ipcs Provides IPC status information

isosize Reports the size of an iso9660 file system

ldattach Attaches a line discipline to a serial line

line Copies a single line

linux32 A symbolic link to setarch

linux64 A symbolic link to setarch

logger Enters the given message into the system log

look Displays lines that begin with the given string

losetup Sets up and controls loop devices

lsblk Lists information about all or selected block devices in a tree-like format.

lscpu Prints CPU architechture information

mcookie Generates magic cookies (128-bit random hexadecimal numbers) for xauth

mkfs Builds a file system on a device (usually a hard disk partition)

mkfs.bfs Creates a Santa Cruz Operations (SCO) bfs file system

mkfs.cramfs Creates a cramfs file system

mkfs.minix Creates a Minix file system

mkswap Initializes the given device or file to be used as a swap area

more A filter for paging through text one screen at a time

mount Attaches the file system on the given device to a specified directory in the file-system tree

namei Shows the symbolic links in the given pathnames

partx Tells the kernel about the presence and numbering of on-disk partitions

pg Displays a text file one screen full at a time

pivot_root Makes the given file system the new root file system of the current process

readprofile Reads kernel profiling information

rename Renames the given files, replacing a given string with another

renice Alters the priority of running processes

rev Reverses the lines of a given file

rtcwake Used to enter a system sleep state until specified wakeup time

script Makes a typescript of a terminal session

scriptreplay Plays back typescripts using timing information

setarch Changes reported architecture in a new program environment and sets personality flags

setsid Runs the given program in a new session

setterm Sets terminal attributes

sfdisk A disk partition table manipulator

Linux From Scratch - Version 6.8

113

swaplabel Allows to change swaparea UUID and label

swapoff Disables devices and files for paging and swapping

swapon Enables devices and files for paging and swapping and lists the devices and files currently in use

switch_root Switches to another filesystem as the root of the mount tree

tailf Tracks the growth of a log file. Displays the last 10 lines of a log file, then continues displaying
any new entries in the log file as they are created

taskset Retrieves or sets a process' CPU affinity

tunelp Tunes the parameters of the line printer

ul A filter for translating underscores into escape sequences indicating underlining for the terminal
in use

umount Disconnects a file system from the system's file tree

unshare Runs a program with some namespaces unshared from parent

uuidd A daemon used by the UUID library to generate time-based UUIDs in a secure and
guranteed-unique fashion.

uuidgen Creates new UUIDs. Each new UUID can reasonably be considered unique among all UUIDs
created, on the local system and on other systems, in the past and in the future

wall Displays the contents of a file or, by default, its standard input, on the terminals of all currently
logged in users

whereis Reports the location of the binary, source, and man page for the given command

wipefs Wipes a filesystem signature from a device

write Sends a message to the given user if that user has not disabled receipt of such messages

libblkid Contains routines for device identification and token extraction

libuuid Contains routines for generating unique identifiers for objects that may be accessible beyond the
local system

Linux From Scratch - Version 6.8

114

6.21. E2fsprogs-1.41.14
The E2fsprogs package contains the utilities for handling the ext2 file system. It also supports the ext3 and ext4
journaling file systems.

Approximate build time: 0.5 SBU
Required disk space: 45 MB

6.21.1. Installation of E2fsprogs
The E2fsprogs documentation recommends that the package be built in a subdirectory of the source tree:

mkdir -v build
cd build

Prepare E2fsprogs for compilation:

../configure --prefix=/usr --with-root-prefix="" \
 --enable-elf-shlibs --disable-libblkid --disable-libuuid \
 --disable-uuidd --disable-fsck

The meaning of the configure options:

--with-root-prefix=""
Certain programs (such as the e2fsck program) are considered essential programs. When, for example, / usr is
not mounted, these programs still need to be available. They belong in directories like / lib and / sbin. If this
option is not passed to E2fsprogs' configure, the programs are installed into the / usr directory.

--enable-elf-shlibs
This creates the shared libraries which some programs in this package use.

--disable-*
This prevents E2fsprogs from building and installing the libuuid and libblkid libraries, the uuidd
daemon, and the fsck wrapper, as Util-Linux installed all of them earlier.

Compile the package:

make

To test the results, issue:

make check

One of the E2fsprogs tests will attempt to allocate 256 MB of memory. If you do not have significantly more RAM
than this, it is recommended to enable sufficient swap space for the test. See Section 2.3, “Creating a File System on
the Partition” and Section 2.4, “Mounting the New Partition” for details on creating and enabling swap space.

Install the binaries, documentation, and shared libraries:

make install

Install the static libraries and headers:

make install-libs

Linux From Scratch - Version 6.8

115

Make the installed static libraries writable so debugging symbols can be removed later:

chmod -v u+w /usr/lib/{libcom_err,libe2p,libext2fs,libss}.a

This package installs a gzipped . info file but doesn't update the system-wide dir file. Unzip this file and then
update the system dir file using the following commands.

gunzip -v /usr/share/info/libext2fs.info.gz
install-info --dir-file=/usr/share/info/dir \
 /usr/share/info/libext2fs.info

If desired, create and install some additional documentation by issuing the following commands:

makeinfo -o doc/com_err.info ../lib/et/com_err.texinfo
install -v -m644 doc/com_err.info /usr/share/info
install-info --dir-file=/usr/share/info/dir \
 /usr/share/info/com_err.info

6.21.2. Contents of E2fsprogs
Installed programs: badblocks, chattr, compile_et, debugfs, dumpe2fs, e2freefrag, e2fsck, e2image,

e2initrd_helper, e2label, e2undo, filefrag, fsck.ext2, fsck.ext3, fsck.ext4, fsck.ext4dev,
logsave, lsattr, mk_cmds, mke2fs, mkfs.ext2, mkfs.ext3, mkfs.ext4, mkfs.ext4dev,
mklost+found, resize2fs, and tune2fs

Installed libraries: libcom_err.{a,so}, libe2p.{a,so}, libext2fs.{a,so} and libss.{a,so}
Installed directory: /usr/include/e2p, /usr/include/et, /usr/include/ext2fs, /usr/include/ss, /usr/share/et,

/usr/share/ss

Short Descriptions

badblocks Searches a device (usually a disk partition) for bad blocks

chattr Changes the attributes of files on an ext2 file system; it also changes ext3 file systems,
the journaling version of ext2 file systems

compile_et An error table compiler; it converts a table of error-code names and messages into a C source
file suitable for use with the com_ err library

debugfs A file system debugger; it can be used to examine and change the state of an ext2 file
system

dumpe2fs Prints the super block and blocks group information for the file system present on a given
device

e2freefrag Reports free space fragmentation information

e2fsck Is used to check, and optionally repair ext2 file systems and ext3 file systems

e2image Is used to save critical ext2 file system data to a file

e2initrd_helper Prints the FS type of a given filesystem, given either a device name or label

e2label Displays or changes the file system label on the ext2 file system present on a given device

e2undo Replays the undo log undo_log for an ext2/ext3/ext4 filesystem found on a device. This can
be used to undo a failed operation by an e2fsprogs program.

filefrag Reports on how badly fragmented a particular file might be

Linux From Scratch - Version 6.8

116

fsck.ext2 By default checks ext2 file systems. This is a hard link to e2fsck.

fsck.ext3 By default checks ext3 file systems. This is a hard link to e2fsck.

fsck.ext4 By default checks ext4 file systems. This is a hard link to e2fsck.

fsck.ext4dev By default checks ext4 development file systems. This is a hard link to e2fsck.

logsave Saves the output of a command in a log file

lsattr Lists the attributes of files on a second extended file system

mk_cmds Converts a table of command names and help messages into a C source file suitable for use
with the libss subsystem library

mke2fs Creates an ext2 or ext3 file system on the given device

mkfs.ext2 By default creates ext2 file systems. This is a hard link to mke2fs.

mkfs.ext3 By default creates ext3 file systems. This is a hard link to mke2fs.

mkfs.ext4 By default creates ext4 file systems. This is a hard link to mke2fs.

mkfs.ext4dev By default creates ext4 development file systems. This is a hard link to mke2fs.

mklost+found Used to create a lost+found directory on an ext2 file system; it pre-allocates disk blocks
to this directory to lighten the task of e2fsck

resize2fs Can be used to enlarge or shrink an ext2 file system

tune2fs Adjusts tunable file system parameters on an ext2 file system

libcom_err The common error display routine

libe2p Used by dumpe2fs, chattr, and lsattr

libext2fs Contains routines to enable user-level programs to manipulate an ext2 file system

libss Used by debugfs

Linux From Scratch - Version 6.8

117

6.22. Coreutils-8.10
The Coreutils package contains utilities for showing and setting the basic system characteristics.

Approximate build time: 3.2 SBU
Required disk space: 99 MB

6.22.1. Installation of Coreutils

A known issue with the uname program from this package is that the - p switch always returns unknown. The
following patch fixes this behavior for Intel architectures:

case `uname -m` in
 i?86 | x86_64) patch -Np1 -i ../coreutils-8.10-uname-1.patch ;;
esac

POSIX requires that programs from Coreutils recognize character boundaries correctly even in multibyte locales. The
following patch fixes this non-compliance and other internationalization-related bugs:

patch -Np1 -i ../coreutils-8.10-i18n-1.patch

Note

In the past, many bugs were found in this patch. When reporting new bugs to Coreutils maintainers, please
check first if they are reproducible without this patch.

Now prepare Coreutils for compilation:

./configure --prefix=/usr \
 --enable-no-install-program=kill,uptime

The meaning of the configure options:

--enable-no-install-program=kill,uptime

The purpose of this switch is to prevent Coreutils from installing binaries that will be installed by other packages
later.

Compile the package:

make

Skip down to “Install the package” if not running the test suite.

Now the test suite is ready to be run. First, run the tests that are meant to be run as user root:

make NON_ROOT_USERNAME=nobody check-root

We're going to run the remainder of the tests as the nobody user. Certain tests, however, require that the user be a
member of more than one group. So that these tests are not skipped we'll add a temporary group and make the user
nobody a part of it:

echo "dummy:x:1000:nobody" >> /etc/group

Linux From Scratch - Version 6.8

118

Fix some of the permissions so that the non-root user can compile and run the tests:

chown -Rv nobody .

Now run the tests:

su-tools nobody -s /bin/bash -c "make RUN_EXPENSIVE_TESTS=yes check"

Remove the temporary group:

sed -i '/dummy/d' /etc/group

Install the package:

make install

Move programs to the locations specified by the FHS:

mv -v /usr/bin/{cat,chgrp,chmod,chown,cp,date,dd,df,echo} /bin
mv -v /usr/bin/{false,ln,ls,mkdir,mknod,mv,pwd,rm} /bin
mv -v /usr/bin/{rmdir,stty,sync,true,uname} /bin
mv -v /usr/bin/chroot /usr/sbin
mv -v /usr/share/man/man1/chroot.1 /usr/share/man/man8/chroot.8
sed -i s/\"1\"/\"8\"/1 /usr/share/man/man8/chroot.8

Some of the scripts in the LFS-Bootscripts package depend on head, sleep, and nice. As / usr may not be available
during the early stages of booting, those binaries need to be on the root partition:

mv -v /usr/bin/{head,sleep,nice} /bin

6.22.2. Contents of Coreutils
Installed programs: base64, basename, cat, chcon, chgrp, chmod, chown, chroot, cksum, comm, cp, csplit,

cut, date, dd, df, dir, dircolors, dirname, du, echo, env, expand, expr, factor, false, fmt,
fold, groups, head, hostid, id, install, join, link, ln, logname, ls, md5sum, mkdir, mkfifo,
mknod, mktemp, mv, nice, nl, nohup, nproc, od, paste, pathchk, pinky, pr, printenv,
printf, ptx, pwd, readlink, rm, rmdir, runcon, seq, sha1sum, sha224sum, sha256sum,
sha384sum, sha512sum, shred, shuf, sleep, sort, split, stat, stdbuf, stty, sum, sync, tac,
tail, tee, test, timeout, touch, tr, true, truncate, tsort, tty, uname, unexpand, uniq, unlink,
users, vdir, wc, who, whoami, and yes

Installed library: libstdbuf.so
Installed directory: /usr/lib/coreutils

Short Descriptions

base64 Encodes and decodes data according to the base64 (RFC 3548) specification

basename Strips any path and a given suffix from a file name

cat Concatenates files to standard output

chcon Changes security context for files and directories

chgrp Changes the group ownership of files and directories

Linux From Scratch - Version 6.8

119

chmod Changes the permissions of each file to the given mode; the mode can be either a symbolic
representation of the changes to make or an octal number representing the new permissions

chown Changes the user and/or group ownership of files and directories

chroot Runs a command with the specified directory as the / directory

cksum Prints the Cyclic Redundancy Check (CRC) checksum and the byte counts of each specified file

comm Compares two sorted files, outputting in three columns the lines that are unique and the lines that
are common

cp Copies files

csplit Splits a given file into several new files, separating them according to given patterns or line numbers
and outputting the byte count of each new file

cut Prints sections of lines, selecting the parts according to given fields or positions

date Displays the current time in the given format, or sets the system date

dd Copies a file using the given block size and count, while optionally performing conversions on it

df Reports the amount of disk space available (and used) on all mounted file systems, or only on the
file systems holding the selected files

dir Lists the contents of each given directory (the same as the ls command)

dircolors Outputs commands to set the LS_ COLOR environment variable to change the color scheme used by ls

dirname Strips the non-directory suffix from a file name

du Reports the amount of disk space used by the current directory, by each of the given directories
(including all subdirectories) or by each of the given files

echo Displays the given strings

env Runs a command in a modified environment

expand Converts tabs to spaces

expr Evaluates expressions

factor Prints the prime factors of all specified integer numbers

false Does nothing, unsuccessfully; it always exits with a status code indicating failure

fmt Reformats the paragraphs in the given files

fold Wraps the lines in the given files

groups Reports a user's group memberships

head Prints the first ten lines (or the given number of lines) of each given file

hostid Reports the numeric identifier (in hexadecimal) of the host

id Reports the effective user ID, group ID, and group memberships of the current user or specified user

install Copies files while setting their permission modes and, if possible, their owner and group

join Joins the lines that have identical join fields from two separate files

link Creates a hard link with the given name to a file

ln Makes hard links or soft (symbolic) links between files

logname Reports the current user's login name

Linux From Scratch - Version 6.8

120

ls Lists the contents of each given directory

md5sum Reports or checks Message Digest 5 (MD5) checksums

mkdir Creates directories with the given names

mkfifo Creates First-In, First-Outs (FIFOs), a “named pipe” in UNIX parlance, with the given names

mknod Creates device nodes with the given names; a device node is a character special file, a block special
file, or a FIFO

mktemp Creates temporary files in a secure manner; it is used in scripts

mv Moves or renames files or directories

nice Runs a program with modified scheduling priority

nl Numbers the lines from the given files

nohup Runs a command immune to hangups, with its output redirected to a log file

nproc Prints the number of processing units available to a process

od Dumps files in octal and other formats

paste Merges the given files, joining sequentially corresponding lines side by side, separated by tab
characters

pathchk Checks if file names are valid or portable

pinky Is a lightweight finger client; it reports some information about the given users

pr Paginates and columnates files for printing

printenv Prints the environment

printf Prints the given arguments according to the given format, much like the C printf function

ptx Produces a permuted index from the contents of the given files, with each keyword in its context

pwd Reports the name of the current working directory

readlink Reports the value of the given symbolic link

rm Removes files or directories

rmdir Removes directories if they are empty

runcon Runs a command with specified security context

seq Prints a sequence of numbers within a given range and with a given increment

sha1sum Prints or checks 160-bit Secure Hash Algorithm 1 (SHA1) checksums

sha224sum Prints or checks 224-bit Secure Hash Algorithm checksums

sha256sum Prints or checks 256-bit Secure Hash Algorithm checksums

sha384sum Prints or checks 384-bit Secure Hash Algorithm checksums

sha512sum Prints or checks 512-bit Secure Hash Algorithm checksums

shred Overwrites the given files repeatedly with complex patterns, making it difficult to recover the data

shuf Shuffles lines of text

sleep Pauses for the given amount of time

sort Sorts the lines from the given files

Linux From Scratch - Version 6.8

121

split Splits the given file into pieces, by size or by number of lines

stat Displays file or filesystem status

stdbuf Runs commands with altered buffering operations for its standard streams

stty Sets or reports terminal line settings

sum Prints checksum and block counts for each given file

sync Flushes file system buffers; it forces changed blocks to disk and updates the super block

tac Concatenates the given files in reverse

tail Prints the last ten lines (or the given number of lines) of each given file

tee Reads from standard input while writing both to standard output and to the given files

test Compares values and checks file types

timeout Runs a command with a time limit

touch Changes file timestamps, setting the access and modification times of the given files to the current
time; files that do not exist are created with zero length

tr Translates, squeezes, and deletes the given characters from standard input

true Does nothing, successfully; it always exits with a status code indicating success

truncate Shrinks or expands a file to the specified size

tsort Performs a topological sort; it writes a completely ordered list according to the partial ordering in
a given file

tty Reports the file name of the terminal connected to standard input

uname Reports system information

unexpand Converts spaces to tabs

uniq Discards all but one of successive identical lines

unlink Removes the given file

users Reports the names of the users currently logged on

vdir Is the same as ls -l

wc Reports the number of lines, words, and bytes for each given file, as well as a total line when more
than one file is given

who Reports who is logged on

whoami Reports the user name associated with the current effective user ID

yes Repeatedly outputs “y” or a given string until killed

libstdbuf Library used by stdbuf

Linux From Scratch - Version 6.8

122

6.23. Iana-Etc-2.30
The Iana-Etc package provides data for network services and protocols.

Approximate build time: less than 0.1 SBU
Required disk space: 2.3 MB

6.23.1. Installation of Iana-Etc
The following command converts the raw data provided by IANA into the correct formats for the / etc/ protocols
and / etc/ services data files:

make

This package does not come with a test suite.

Install the package:

make install

6.23.2. Contents of Iana-Etc
Installed files: /etc/protocols and /etc/services

Short Descriptions

/etc/protocols Describes the various DARPA Internet protocols that are available from the TCP/IP
subsystem

/etc/services Provides a mapping between friendly textual names for internet services, and their underlying
assigned port numbers and protocol types

Linux From Scratch - Version 6.8

123

6.24. M4-1.4.15
The M4 package contains a macro processor.

Approximate build time: 0.4 SBU
Required disk space: 14.2 MB

6.24.1. Installation of M4
Prepare M4 for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

6.24.2. Contents of M4
Installed program: m4

Short Descriptions

m4 copies the given files while expanding the macros that they contain. These macros are either built-in or
user-defined and can take any number of arguments. Besides performing macro expansion, m4 has built-in
functions for including named files, running Unix commands, performing integer arithmetic, manipulating
text, recursion, etc. The m4 program can be used either as a front-end to a compiler or as a macro processor
in its own right.

Linux From Scratch - Version 6.8

124

6.25. Bison-2.4.3
The Bison package contains a parser generator.

Approximate build time: 1.1 SBU
Required disk space: 19.2 MB

6.25.1. Installation of Bison
Prepare Bison for compilation:

./configure --prefix=/usr

The configure system causes Bison to be built without support for internationalization of error messages if a bison
program is not already in $PATH. The following addition will correct this:

echo '#define YYENABLE_NLS 1' >> lib/config.h

Compile the package:

make

To test the results (about 0.5 SBU), issue:

make check

Install the package:

make install

6.25.2. Contents of Bison
Installed programs: bison and yacc
Installed library: liby.a
Installed directory: /usr/share/bison

Short Descriptions

bison Generates, from a series of rules, a program for analyzing the structure of text files; Bison is a replacement
for Yacc (Yet Another Compiler Compiler)

yacc A wrapper for bison, meant for programs that still call yacc instead of bison; it calls bison with the - y
option

liby.a The Yacc library containing implementations of Yacc-compatible yyerror and main functions; this
library is normally not very useful, but POSIX requires it

Linux From Scratch - Version 6.8

125

6.26. Procps-3.2.8
The Procps package contains programs for monitoring processes.

Approximate build time: 0.1 SBU
Required disk space: 2.3 MB

6.26.1. Installation of Procps
Apply a patch to prevent an error message from being displayed when determining the kernel clock tick rate:

patch -Np1 -i ../procps-3.2.8-fix_HZ_errors-1.patch

Apply a patch to fix a unicode related issue in the watch program:

patch -Np1 -i ../procps-3.2.8-watch_unicode-1.patch

Fix a bug in the Makefile, which prevents procps from building with make-3.82:

sed -i -e 's@*/module.mk@proc/module.mk ps/module.mk@' Makefile

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

6.26.2. Contents of Procps
Installed programs: free, kill, pgrep, pkill, pmap, ps, pwdx, skill, slabtop, snice, sysctl, tload, top, uptime,

vmstat, w, and watch
Installed library: libproc.so

Short Descriptions

free Reports the amount of free and used memory (both physical and swap memory) in the system

kill Sends signals to processes

pgrep Looks up processes based on their name and other attributes

pkill Signals processes based on their name and other attributes

pmap Reports the memory map of the given process

ps Lists the current running processes

pwdx Reports the current working directory of a process

skill Sends signals to processes matching the given criteria

slabtop Displays detailed kernel slap cache information in real time

snice Changes the scheduling priority of processes matching the given criteria

sysctl Modifies kernel parameters at run time

Linux From Scratch - Version 6.8

126

tload Prints a graph of the current system load average

top Displays a list of the most CPU intensive processes; it provides an ongoing look at processor activity
in real time

uptime Reports how long the system has been running, how many users are logged on, and the system load
averages

vmstat Reports virtual memory statistics, giving information about processes, memory, paging, block
Input/Output (IO), traps, and CPU activity

w Shows which users are currently logged on, where, and since when

watch Runs a given command repeatedly, displaying the first screen-full of its output; this allows a user to
watch the output change over time

libproc Contains the functions used by most programs in this package

Linux From Scratch - Version 6.8

127

6.27. Grep-2.7
The Grep package contains programs for searching through files.

Approximate build time: 0.1 SBU
Required disk space: 7.3 MB

6.27.1. Installation of Grep
Prepare Grep for compilation:

./configure --prefix=/usr \
 --bindir=/bin

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

6.27.2. Contents of Grep
Installed programs: egrep, fgrep, and grep

Short Descriptions

egrep Prints lines matching an extended regular expression

fgrep Prints lines matching a list of fixed strings

grep Prints lines matching a basic regular expression

Linux From Scratch - Version 6.8

128

6.28. Readline-6.2
The Readline package is a set of libraries that offers command-line editing and history capabilities.

Approximate build time: 0.2 SBU
Required disk space: 13.8 MB

6.28.1. Installation of Readline
Reinstalling Readline will cause the old libraries to be moved to <libraryname>.old. While this is normally not a
problem, in some cases it can trigger a linking bug in ldconfig. This can be avoided by issuing the following two seds:

sed -i '/MV.*old/d' Makefile.in
sed -i '/{OLDSUFF}/c:' support/shlib-install

Prepare Readline for compilation:

./configure --prefix=/usr --libdir=/lib

Compile the package:

make SHLIB_LIBS=-lncurses

The meaning of the make option:

SHLIB_LIBS=-lncurses
This option forces Readline to link against the libncurses (really, libncursesw) library.

This package does not come with a test suite.

Install the package:

make install

Now move the static libraries to a more appropriate location:

mv -v /lib/lib{readline,history}.a /usr/lib

Next, remove the . so files in / lib and relink them into / usr/ lib:

rm -v /lib/lib{readline,history}.so
ln -sfv ../../lib/libreadline.so.6 /usr/lib/libreadline.so
ln -sfv ../../lib/libhistory.so.6 /usr/lib/libhistory.so

If desired, install the documentation:

mkdir -v /usr/share/doc/readline-6.2
install -v -m644 doc/*.{ps,pdf,html,dvi} \
 /usr/share/doc/readline-6.2

6.28.2. Contents of Readline
Installed libraries: libhistory.{a,so}, and libreadline.{a,so}
Installed directories: /usr/include/readline, /usr/share/readline, /usr/share/doc/readline-6.2

Linux From Scratch - Version 6.8

129

Short Descriptions

libhistory Provides a consistent user interface for recalling lines of history

libreadline Aids in the consistency of user interface across discrete programs that need to provide a command
line interface

Linux From Scratch - Version 6.8

130

6.29. Bash-4.2
The Bash package contains the Bourne-Again SHell.

Approximate build time: 1.4 SBU
Required disk space: 35 MB

6.29.1. Installation of Bash
Prepare Bash for compilation:

./configure --prefix=/usr --bindir=/bin \
 --htmldir=/usr/share/doc/bash-4.2 --without-bash-malloc \
 --with-installed-readline

The meaning of the configure options:

--htmldir
This option designates the directory into which HTML formatted documentation will be installed.

--with-installed-readline
This option tells Bash to use the readline library that is already installed on the system rather than using
its own readline version.

Compile the package:

make

Skip down to “Install the package” if not running the test suite.

To prepare the tests, ensure that the nobody user can write to the sources tree:

chown -Rv nobody .

Now, run the tests as the nobody user:

su-tools nobody -s /bin/bash -c "make tests"

Install the package:

make install

Run the newly compiled bash program (replacing the one that is currently being executed):

exec /bin/bash --login +h

Note

The parameters used make the bash process an interactive login shell and continue to disable hashing so
that new programs are found as they become available.

6.29.2. Contents of Bash
Installed programs: bash, bashbug, and sh (link to bash)
Installed directory: /usr/share/doc/bash-4.2

Linux From Scratch - Version 6.8

131

Short Descriptions

bash A widely-used command interpreter; it performs many types of expansions and substitutions on a given
command line before executing it, thus making this interpreter a powerful tool

bashbug A shell script to help the user compose and mail standard formatted bug reports concerning bash

sh A symlink to the bash program; when invoked as sh, bash tries to mimic the startup behavior of historical
versions of sh as closely as possible, while conforming to the POSIX standard as well

Linux From Scratch - Version 6.8

132

6.30. Libtool-2.4
The Libtool package contains the GNU generic library support script. It wraps the complexity of using shared libraries
in a consistent, portable interface.

Approximate build time: 3.7 SBU
Required disk space: 35 MB

6.30.1. Installation of Libtool
Prepare Libtool for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results (about 3.0 SBU), issue:

make check

Install the package:

make install

6.30.2. Contents of Libtool
Installed programs: libtool and libtoolize
Installed libraries: libltdl.{a,so}
Installed directories: /usr/include/libltdl, /usr/share/libtool

Short Descriptions

libtool Provides generalized library-building support services

libtoolize Provides a standard way to add libtool support to a package

libltdl Hides the various difficulties of dlopening libraries

Linux From Scratch - Version 6.8

133

6.31. GDBM-1.8.3
The GDBM package contains the GNU Database Manager. This is a disk file format database which stores
key/data-pairs in single files. The actual data of any record being stored is indexed by a unique key, which can be
retrieved in less time than if it was stored in a text file.

Approximate build time: 0.1 SBU
Required disk space: 2.7 MB

6.31.1. Installation of GDBM
Prepare GDBM for compilation:

./configure --prefix=/usr

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

In addition, install the DBM and NDBM compatibility headers, as some packages outside of LFS may look for these
older dbm routines:

make install-compat

Fix a minor installation issue by manually adding GDBM to the info table of contents:

install-info --dir-file=/usr/info/dir /usr/info/gdbm.info

6.31.2. Contents of GDBM
Installed libraries: libgdbm.{so,a} and libgdbm_compat.{so,a}

Short Descriptions

libgdbm Contains functions to manipulate a hashed database

Linux From Scratch - Version 6.8

134

6.32. Inetutils-1.8
The Inetutils package contains programs for basic networking.

Approximate build time: 0.4 SBU
Required disk space: 17 MB

6.32.1. Installation of Inetutils

./configure --prefix=/usr --libexecdir=/usr/sbin \
 --localstatedir=/var --disable-ifconfig \
 --disable-logger --disable-syslogd --disable-whois \
 --disable-servers

The meaning of the configure options:

--disable-ifconfig
This option prevents Inetutils from installing the ifconfig program, which can be used to configure network
interfaces. LFS uses ip from IPRoute2 to perform this task.

--disable-logger
This option prevents Inetutils from installing the logger program, which is used by scripts to pass messages to
the System Log Daemon. Do not install it because Util-linux installed a version earlier.

--disable-syslogd
This option prevents Inetutils from installing the System Log Daemon, which is installed with the Sysklogd
package.

--disable-whois
This option disables the building of the Inetutils whois client, which is out of date. Instructions for a better whois
client are in the BLFS book.

--disable-servers
This disables the installation of the various network servers included as part of the Inetutils package.
These servers are deemed not appropriate in a basic LFS system. Some are insecure by nature and are
only considered safe on trusted networks. More information can be found at http:// www. linuxfromscratch.
org/ blfs/ view/ svn/ basicnet/ inetutils. html. Note that better replacements are available for many of these servers.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install
make -C doc html
make -C doc install-html docdir=/usr/share/doc/inetutils-1.8

Move some programs to their FHS-compliant place:

mv -v /usr/bin/{hostname,ping,ping6} /bin
mv -v /usr/bin/traceroute /sbin

http://www.linuxfromscratch.org/blfs/view/svn/basicnet/inetutils.html
http://www.linuxfromscratch.org/blfs/view/svn/basicnet/inetutils.html

Linux From Scratch - Version 6.8

135

6.32.2. Contents of Inetutils
Installed programs: ftp, hostname, ping, ping6, rcp, rexec, rlogin, rsh, talk, telnet, tftp, and traceroute

Short Descriptions

ftp Is the file transfer protocol program

hostname Reports or sets the name of the host

ping Sends echo-request packets and reports how long the replies take

ping6 A version of ping for IPv6 networks

rcp Performs remote file copy

rexec executes commands on a remote host

rlogin Performs remote login

rsh Runs a remote shell

talk Is used to chat with another user

telnet An interface to the TELNET protocol

tftp A trivial file transfer program

traceroute Traces the route your packets take from the host you are working on to another host on a network,
showing all the intermediate hops (gateways) along the way

Linux From Scratch - Version 6.8

136

6.33. Perl-5.12.3
The Perl package contains the Practical Extraction and Report Language.

Approximate build time: 5.5 SBU
Required disk space: 171 MB

6.33.1. Installation of Perl
First create a basic / etc/ hosts file to be referenced in one of Perl's configuration files as well as the optional
test suite:

echo "127.0.0.1 localhost $(hostname)" > /etc/hosts

This version of Perl now builds the Compress::Raw::Zlib module. By default Perl will use an internal copy of the
Zlib source for the build. Issue the following command so that Perl will use the Zlib library installed on the system:

sed -i -e "s|BUILD_ZLIB\s*= True|BUILD_ZLIB = False|" \
 -e "s|INCLUDE\s*= ./zlib-src|INCLUDE = /usr/include|" \
 -e "s|LIB\s*= ./zlib-src|LIB = /usr/lib|" \
 cpan/Compress-Raw-Zlib/config.in

To have full control over the way Perl is set up, you can remove the “-des” options from the following command
and hand-pick the way this package is built. Alternatively, use the command exactly as below to use the defaults
that Perl auto-detects:

sh Configure -des -Dprefix=/usr \
 -Dvendorprefix=/usr \
 -Dman1dir=/usr/share/man/man1 \
 -Dman3dir=/usr/share/man/man3 \
 -Dpager="/usr/bin/less -isR" \
 -Duseshrplib

The meaning of the configure options:

-Dvendorprefix=/usr
This ensures perl knows how to tell packages where they should install their perl modules.

-Dpager="/usr/bin/less -isR"
This corrects an error in the way that perldoc invokes the less program.

-Dman1dir=/usr/share/man/man1 -Dman3dir=/usr/share/man/man3
Since Groff is not installed yet, Configure thinks that we do not want man pages for Perl. Issuing these
parameters overrides this decision.

-Duseshrplib
Build a shared libperl needed by some perl modules.

Compile the package:

make

To test the results (approximately 2.5 SBU), issue:

make test

Linux From Scratch - Version 6.8

137

Install the package:

make install

6.33.2. Contents of Perl
Installed programs: a2p, c2ph, config_data, corelist, cpan, cpan2dist, cpanp, cpanp-run-perl, dprofpp,

enc2xs, find2perl, h2ph, h2xs, instmodsh, libnetcfg, perl, perl5.12.3 (link to perl),
perlbug, perldoc, perlivp, perlthanks (link to perlbug), piconv, pl2pm, pod2html,
pod2latex, pod2man, pod2text, pod2usage, podchecker, podselect, prove, psed (link to
s2p), pstruct (link to c2ph), ptar, ptardiff, s2p, shasum, splain, and xsubpp

Installed libraries: Several hundred which cannot all be listed here
Installed directory: /usr/lib/perl5

Short Descriptions

a2p Translates awk to Perl

c2ph Dumps C structures as generated from cc -g -S

config_data Queries or changes configuration of Perl modules

corelist A commandline frontend to Module::CoreList

cpan Interact with the Comprehensive Perl Archive Network (CPAN) from the command line

cpan2dist The CPANPLUS distribution creator

cpanp The CPANPLUS launcher

cpanp-run-perl Perl script that is used to enable flushing of the output buffer after each write in spawned
processes

dprofpp Displays Perl profile data

enc2xs Builds a Perl extension for the Encode module from either Unicode Character Mappings or
Tcl Encoding Files

find2perl Translates find commands to Perl

h2ph Converts . h C header files to . ph Perl header files

h2xs Converts . h C header files to Perl extensions

instmodsh Shell script for examining installed Perl modules, and can even create a tarball from an
installed module

libnetcfg Can be used to configure the libnet Perl module

perl Combines some of the best features of C, sed, awk and sh into a single swiss-army language

perl5.12.3 A hard link to perl

perlbug Used to generate bug reports about Perl, or the modules that come with it, and mail them

perldoc Displays a piece of documentation in pod format that is embedded in the Perl installation tree
or in a Perl script

perlivp The Perl Installation Verification Procedure; it can be used to verify that Perl and its libraries
have been installed correctly

perlthanks Used to generate thank you messages to mail to the Perl developers

Linux From Scratch - Version 6.8

138

piconv A Perl version of the character encoding converter iconv

pl2pm A rough tool for converting Perl4 . pl files to Perl5 . pm modules

pod2html Converts files from pod format to HTML format

pod2latex Converts files from pod format to LaTeX format

pod2man Converts pod data to formatted *roff input

pod2text Converts pod data to formatted ASCII text

pod2usage Prints usage messages from embedded pod docs in files

podchecker Checks the syntax of pod format documentation files

podselect Displays selected sections of pod documentation

prove Command line tool for running tests against the Test::Harness module.

psed A Perl version of the stream editor sed

pstruct Dumps C structures as generated from cc -g -S stabs

ptar A tar-like program written in Perl

ptardiff A Perl program that compares an extracted archive with an unextracted one

s2p Translates sed scripts to Perl

shasum Prints or checks SHA checksums

splain Is used to force verbose warning diagnostics in Perl

xsubpp Converts Perl XS code into C code

Linux From Scratch - Version 6.8

139

6.34. Autoconf-2.68
The Autoconf package contains programs for producing shell scripts that can automatically configure source code.

Approximate build time: 4.8 SBU
Required disk space: 12.4 MB

6.34.1. Installation of Autoconf
Prepare Autoconf for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

This takes a long time, about 4.7 SBUs. In addition, 6 tests are skipped that use Automake. For full test coverage,
Autoconf can be re-tested after Automake has been installed.

Install the package:

make install

6.34.2. Contents of Autoconf
Installed programs: autoconf, autoheader, autom4te, autoreconf, autoscan, autoupdate, and ifnames
Installed directory: /usr/share/autoconf

Short Descriptions

autoconf Produces shell scripts that automatically configure software source code packages to adapt to many
kinds of Unix-like systems. The configuration scripts it produces are independent—running them
does not require the autoconf program.

autoheader A tool for creating template files of C #define statements for configure to use

autom4te A wrapper for the M4 macro processor

autoreconf Automatically runs autoconf, autoheader, aclocal, automake, gettextize, and libtoolize in the
correct order to save time when changes are made to autoconf and automake template files

autoscan Helps to create a configure. in file for a software package; it examines the source files in a
directory tree, searching them for common portability issues, and creates a configure. scan
file that serves as as a preliminary configure. in file for the package

autoupdate Modifies a configure. in file that still calls autoconf macros by their old names to use the
current macro names

ifnames Helps when writing configure. in files for a software package; it prints the identifiers that the
package uses in C preprocessor conditionals. If a package has already been set up to have some
portability, this program can help determine what configure needs to check for. It can also fill in
gaps in a configure. in file generated by autoscan

Linux From Scratch - Version 6.8

140

6.35. Automake-1.11.1
The Automake package contains programs for generating Makefiles for use with Autoconf.

Approximate build time: 18.3 SBU
Required disk space: 28.8 MB

6.35.1. Installation of Automake
Prepare Automake for compilation:

./configure --prefix=/usr --docdir=/usr/share/doc/automake-1.11.1

Compile the package:

make

To test the results, issue:

make check

This takes a long time, about 10 SBUs.

Install the package:

make install

6.35.2. Contents of Automake
Installed programs: acinstall, aclocal, aclocal-1.11.1, automake, automake-1.11.1, compile, config.guess,

config.sub, depcomp, elisp-comp, install-sh, mdate-sh, missing, mkinstalldirs,
py-compile, symlink-tree, and ylwrap

Installed directories: /usr/share/aclocal-1.11, /usr/share/automake-1.11, /usr/share/doc/automake-1.11.1

Short Descriptions

acinstall A script that installs aclocal-style M4 files

aclocal Generates aclocal. m4 files based on the contents of configure. in files

aclocal-1.11.1 A hard link to aclocal

automake A tool for automatically generating Makefile. in files from Makefile. am files. To
create all the Makefile. in files for a package, run this program in the top-level directory.
By scanning the configure. in file, it automatically finds each appropriate Makefile.
am file and generates the corresponding Makefile. in file

automake-1.11.1 A hard link to automake

compile A wrapper for compilers

config.guess A script that attempts to guess the canonical triplet for the given build, host, or target
architecture

config.sub A configuration validation subroutine script

depcomp A script for compiling a program so that dependency information is generated in addition
to the desired output

Linux From Scratch - Version 6.8

141

elisp-comp Byte-compiles Emacs Lisp code

install-sh A script that installs a program, script, or data file

mdate-sh A script that prints the modification time of a file or directory

missing A script acting as a common stub for missing GNU programs during an installation

mkinstalldirs A script that creates a directory tree

py-compile Compiles a Python program

symlink-tree A script to create a symlink tree of a directory tree

ylwrap A wrapper for lex and yacc

Linux From Scratch - Version 6.8

142

6.36. Bzip2-1.0.6
The Bzip2 package contains programs for compressing and decompressing files. Compressing text files with bzip2
yields a much better compression percentage than with the traditional gzip.

Approximate build time: less than 0.1 SBU
Required disk space: 6.4 MB

6.36.1. Installation of Bzip2
Apply a patch that will install the documentation for this package:

patch -Np1 -i ../bzip2-1.0.6-install_docs-1.patch

The following command ensures installation of symbolic links are relative:

sed -i 's@\(ln -s -f \)$(PREFIX)/bin/@\1@' Makefile

Prepare Bzip2 for compilation with:

make -f Makefile-libbz2_so
make clean

The meaning of the make parameter:

-f Makefile-libbz2_so
This will cause Bzip2 to be built using a different Makefile file, in this case the Makefile- libbz2_ so
file, which creates a dynamic libbz2. so library and links the Bzip2 utilities against it.

Compile and test the package:

make

Install the programs:

make PREFIX=/usr install

Install the shared bzip2 binary into the / bin directory, make some necessary symbolic links, and clean up:

cp -v bzip2-shared /bin/bzip2
cp -av libbz2.so* /lib
ln -sv ../../lib/libbz2.so.1.0 /usr/lib/libbz2.so
rm -v /usr/bin/{bunzip2,bzcat,bzip2}
ln -sv bzip2 /bin/bunzip2
ln -sv bzip2 /bin/bzcat

6.36.2. Contents of Bzip2
Installed programs: bunzip2 (link to bzip2), bzcat (link to bzip2), bzcmp (link to bzdiff), bzdiff, bzegrep

(link to bzgrep), bzfgrep (link to bzgrep), bzgrep, bzip2, bzip2recover, bzless (link to
bzmore), and bzmore

Installed libraries: libbz2.{a,so}
Installed directory: /usr/share/doc/bzip2-1.0.6

Linux From Scratch - Version 6.8

143

Short Descriptions

bunzip2 Decompresses bzipped files

bzcat Decompresses to standard output

bzcmp Runs cmp on bzipped files

bzdiff Runs diff on bzipped files

bzegrep Runs egrep on bzipped files

bzfgrep Runs fgrep on bzipped files

bzgrep Runs grep on bzipped files

bzip2 Compresses files using the Burrows-Wheeler block sorting text compression algorithm with
Huffman coding; the compression rate is better than that achieved by more conventional
compressors using “Lempel-Ziv” algorithms, like gzip

bzip2recover Tries to recover data from damaged bzipped files

bzless Runs less on bzipped files

bzmore Runs more on bzipped files

libbz2* The library implementing lossless, block-sorting data compression, using the Burrows-Wheeler
algorithm

Linux From Scratch - Version 6.8

144

6.37. Diffutils-3.0
The Diffutils package contains programs that show the differences between files or directories.

Approximate build time: 0.1 SBU
Required disk space: 6.3 MB

6.37.1. Installation of Diffutils
Prepare Diffutils for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

6.37.2. Contents of Diffutils
Installed programs: cmp, diff, diff3, and sdiff

Short Descriptions

cmp Compares two files and reports whether or in which bytes they differ

diff Compares two files or directories and reports which lines in the files differ

diff3 Compares three files line by line

sdiff Merges two files and interactively outputs the results

Linux From Scratch - Version 6.8

145

6.38. Gawk-3.1.8
The Gawk package contains programs for manipulating text files.

Approximate build time: 0.2 SBU
Required disk space: 19 MB

6.38.1. Installation of Gawk
Prepare Gawk for compilation:

./configure --prefix=/usr --libexecdir=/usr/lib

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

If desired, install the documentation:

mkdir -v /usr/share/doc/gawk-3.1.8
cp -v doc/{awkforai.txt,*.{eps,pdf,jpg}} \
 /usr/share/doc/gawk-3.1.8

6.38.2. Contents of Gawk
Installed programs: awk (link to gawk), gawk, gawk-3.1.8, grcat, igawk, pgawk, pgawk-3.1.8, and pwcat
Installed directories: /usr/lib/awk, /usr/share/awk

Short Descriptions

awk A link to gawk

gawk A program for manipulating text files; it is the GNU implementation of awk

gawk-3.1.8 A hard link to gawk

grcat Dumps the group database / etc/ group

igawk Gives gawk the ability to include files

pgawk The profiling version of gawk

pgawk-3.1.8 Hard link to pgawk

pwcat Dumps the password database / etc/ passwd

Linux From Scratch - Version 6.8

146

6.39. File-5.05
The File package contains a utility for determining the type of a given file or files.

Approximate build time: 0.2 SBU
Required disk space: 9.5 MB

6.39.1. Installation of File
Prepare File for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

6.39.2. Contents of File
Installed programs: file
Installed library: libmagic.{a,so}

Short Descriptions

file Tries to classify each given file; it does this by performing several tests—file system tests, magic
number tests, and language tests

libmagic Contains routines for magic number recognition, used by the file program

Linux From Scratch - Version 6.8

147

6.40. Findutils-4.4.2
The Findutils package contains programs to find files. These programs are provided to recursively search through
a directory tree and to create, maintain, and search a database (often faster than the recursive find, but unreliable if
the database has not been recently updated).

Approximate build time: 0.5 SBU
Required disk space: 22 MB

6.40.1. Installation of Findutils
Prepare Findutils for compilation:

./configure --prefix=/usr --libexecdir=/usr/lib/findutils \
 --localstatedir=/var/lib/locate

The meaning of the configure options:

--localstatedir
This option changes the location of the locate database to be in / var/ lib/ locate, which is FHS-compliant.

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

Some of the scripts in the LFS-Bootscripts package depend on find. As / usr may not be available during the early
stages of booting, this program needs to be on the root partition. The updatedb script also needs to be modified to
correct an explicit path:

mv -v /usr/bin/find /bin
sed -i 's/find:=${BINDIR}/find:=\/bin/' /usr/bin/updatedb

6.40.2. Contents of Findutils
Installed programs: bigram, code, find, frcode, locate, oldfind, updatedb, and xargs
Installed directory: /usr/lib/findutils

Short Descriptions

bigram Was formerly used to produce locate databases

code Was formerly used to produce locate databases; it is the ancestor of frcode.

find Searches given directory trees for files matching the specified criteria

frcode Is called by updatedb to compress the list of file names; it uses front-compression, reducing the
database size by a factor of four to five.

Linux From Scratch - Version 6.8

148

locate Searches through a database of file names and reports the names that contain a given string or match
a given pattern

oldfind Older version of find, using a different algorithm

updatedb Updates the locate database; it scans the entire file system (including other file systems that are
currently mounted, unless told not to) and puts every file name it finds into the database

xargs Can be used to apply a given command to a list of files

Linux From Scratch - Version 6.8

149

6.41. Flex-2.5.35
The Flex package contains a utility for generating programs that recognize patterns in text.

Approximate build time: 0.7 SBU
Required disk space: 28 MB

6.41.1. Installation of Flex

Apply a patch that fixes a bug in the C++ scanner generator, that causes scanner compilation to fail when using
GCC-4.5.2:

patch -Np1 -i ../flex-2.5.35-gcc44-1.patch

Prepare Flex for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results (about 0.5 SBU), issue:

make check

Install the package:

make install

There are some packages that expect to find the lex library in / usr/ lib. Create a symlink to account for this:

ln -sv libfl.a /usr/lib/libl.a

A few programs do not know about flex yet and try to run its predecessor, lex. To support those programs, create a
wrapper script named lex that calls flex in lex emulation mode:

cat > /usr/bin/lex << "EOF"
#!/bin/sh
Begin /usr/bin/lex

exec /usr/bin/flex -l "$@"

End /usr/bin/lex
EOF
chmod -v 755 /usr/bin/lex

If desired, install the flex. pdf documentation file:

mkdir -v /usr/share/doc/flex-2.5.35
cp -v doc/flex.pdf \
 /usr/share/doc/flex-2.5.35

Linux From Scratch - Version 6.8

150

6.41.2. Contents of Flex
Installed programs: flex and lex
Installed libraries: libfl.a and libfl_pic.a

Short Descriptions

flex A tool for generating programs that recognize patterns in text; it allows for the versatility to specify the
rules for pattern-finding, eradicating the need to develop a specialized program

lex A script that runs flex in lex emulation mode

libfl.a The flex library

Linux From Scratch - Version 6.8

151

6.42. Gettext-0.18.1.1
The Gettext package contains utilities for internationalization and localization. These allow programs to be compiled
with NLS (Native Language Support), enabling them to output messages in the user's native language.

Approximate build time: 5.8 SBU
Required disk space: 125 MB

6.42.1. Installation of Gettext
Prepare Gettext for compilation:

./configure --prefix=/usr \
 --docdir=/usr/share/doc/gettext-0.18.1.1

Compile the package:

make

To test the results (this takes a long time, around 3 SBUs), issue:

make check

Install the package:

make install

6.42.2. Contents of Gettext
Installed programs: autopoint, config.charset, config.rpath, envsubst, gettext, gettext.sh, gettextize,

hostname, msgattrib, msgcat, msgcmp, msgcomm, msgconv, msgen, msgexec,
msgfilter, msgfmt, msggrep, msginit, msgmerge, msgunfmt, msguniq, ngettext,
recode-sr-latin, and xgettext

Installed libraries: libasprintf.{a,so}, libgettextlib.so, libgettextpo.{a,so}, libgettextsrc.so, and
preloadable_libintl.so

Installed directories: /usr/lib/gettext, /usr/share/doc/gettext-0.18.1.1, /usr/share/gettext

Short Descriptions

autopoint Copies standard Gettext infrastructure files into a source package

config.charset Outputs a system-dependent table of character encoding aliases

config.rpath Outputs a system-dependent set of variables, describing how to set the runtime search
path of shared libraries in an executable

envsubst Substitutes environment variables in shell format strings

gettext Translates a natural language message into the user's language by looking up the
translation in a message catalog

gettext.sh Primarily serves as a shell function library for gettext

gettextize Copies all standard Gettext files into the given top-level directory of a package to
begin internationalizing it

hostname Displays a network hostname in various forms

Linux From Scratch - Version 6.8

152

msgattrib Filters the messages of a translation catalog according to their attributes and
manipulates the attributes

msgcat Concatenates and merges the given . po files

msgcmp Compares two . po files to check that both contain the same set of msgid strings

msgcomm Finds the messages that are common to to the given . po files

msgconv Converts a translation catalog to a different character encoding

msgen Creates an English translation catalog

msgexec Applies a command to all translations of a translation catalog

msgfilter Applies a filter to all translations of a translation catalog

msgfmt Generates a binary message catalog from a translation catalog

msggrep Extracts all messages of a translation catalog that match a given pattern or belong to
some given source files

msginit Creates a new . po file, initializing the meta information with values from the user's
environment

msgmerge Combines two raw translations into a single file

msgunfmt Decompiles a binary message catalog into raw translation text

msguniq Unifies duplicate translations in a translation catalog

ngettext Displays native language translations of a textual message whose grammatical form
depends on a number

recode-sr-latin Recodes Serbian text from Cyrillic to Latin script

xgettext Extracts the translatable message lines from the given source files to make the first
translation template

libasprintf defines the autosprintf class, which makes C formatted output routines usable in C++
programs, for use with the <string> strings and the <iostream> streams

libgettextlib a private library containing common routines used by the various Gettext programs;
these are not intended for general use

libgettextpo Used to write specialized programs that process . po files; this library is used when the
standard applications shipped with Gettext (such as msgcomm, msgcmp, msgattrib,
and msgen) will not suffice

libgettextsrc A private library containing common routines used by the various Gettext programs;
these are not intended for general use

preloadable_libintl A library, intended to be used by LD_PRELOAD that assists libintl in logging
untranslated messages.

Linux From Scratch - Version 6.8

153

6.43. Groff-1.21
The Groff package contains programs for processing and formatting text.

Approximate build time: 0.4 SBU
Required disk space: 78 MB

6.43.1. Installation of Groff
Groff expects the environment variable PAGE to contain the default paper size. For users in the United
States, PAGE=letter is appropriate. Elsewhere, PAGE=A4 may be more suitable. While the default paper
size is configured during compilation, it can be overridden later by echoing either “A4” or “letter” to the
/ etc/ papersize file.

Prepare Groff for compilation:

PAGE=<paper_size> ./configure --prefix=/usr

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

Some documentation programs, such as xman, will not work properly without the following symlinks:

ln -sv eqn /usr/bin/geqn
ln -sv tbl /usr/bin/gtbl

6.43.2. Contents of Groff
Installed programs: addftinfo, afmtodit, chem, eqn, eqn2graph, gdiffmk, geqn (link to eqn), grap2graph,

grn, grodvi, groff, groffer, grog, grolbp, grolj4, grops, grotty, gtbl (link to tbl),
hpftodit, indxbib, lkbib, lookbib, mmroff, neqn, nroff, pdfroff, pfbtops, pic, pic2graph,
post-grohtml, preconv, pre-grohtml, refer, roff2dvi, roff2html, roff2pdf, roff2ps,
roff2text, roff2x, soelim, tbl, tfmtodit, and troff

Installed directories: /usr/lib/groff, /usr/share/doc/groff-1.21, /usr/share/groff

Short Descriptions

addftinfo Reads a troff font file and adds some additional font-metric information that is used by the groff
system

afmtodit Creates a font file for use with groff and grops

chem Groff preprocessor for producing chemical structure diagrams

eqn Compiles descriptions of equations embedded within troff input files into commands that are
understood by troff

eqn2graph Converts a troff EQN (equation) into a cropped image

Linux From Scratch - Version 6.8

154

gdiffmk Marks differences between groff/nroff/troff files

geqn A link to eqn

grap2graph Converts a grap diagram into a cropped bitmap image

grn A groff preprocessor for gremlin files

grodvi A driver for groff that produces TeX dvi format

groff A front-end to the groff document formatting system; normally, it runs the troff program and a
post-processor appropriate for the selected device

groffer Displays groff files and man pages on X and tty terminals

grog Reads files and guesses which of the groff options - e, - man, - me, - mm, - ms, - p, - s, and - t
are required for printing files, and reports the groff command including those options

grolbp Is a groff driver for Canon CAPSL printers (LBP-4 and LBP-8 series laser printers)

grolj4 Is a driver for groff that produces output in PCL5 format suitable for an HP LaserJet 4 printer

grops Translates the output of GNU troff to PostScript

grotty Translates the output of GNU troff into a form suitable for typewriter-like devices

gtbl A link to tbl

hpftodit Creates a font file for use with groff -Tlj4 from an HP-tagged font metric file

indxbib Creates an inverted index for the bibliographic databases with a specified file for use with refer,
lookbib, and lkbib

lkbib Searches bibliographic databases for references that contain specified keys and reports any
references found

lookbib Prints a prompt on the standard error (unless the standard input is not a terminal), reads a line
containing a set of keywords from the standard input, searches the bibliographic databases in
a specified file for references containing those keywords, prints any references found on the
standard output, and repeats this process until the end of input

mmroff A simple preprocessor for groff

neqn Formats equations for American Standard Code for Information Interchange (ASCII) output

nroff A script that emulates the nroff command using groff

pdfroff Creates pdf documents using groff

pfbtops Translates a PostScript font in . pfb format to ASCII

pic Compiles descriptions of pictures embedded within troff or TeX input files into commands
understood by TeX or troff

pic2graph Converts a PIC diagram into a cropped image

post-grohtml Translates the output of GNU troff to HTML

preconv Converts encoding of input files to something GNU troff understands

pre-grohtml Translates the output of GNU troff to HTML

refer Copies the contents of a file to the standard output, except that lines between .[and .] are
interpreted as citations, and lines between .R1 and .R2 are interpreted as commands for how
citations are to be processed

Linux From Scratch - Version 6.8

155

roff2dvi Transforms roff files into DVI format

roff2html Transforms roff files into HTML format

roff2pdf Transforms roff files into PDFs

roff2ps Transforms roff files into ps files

roff2text Transforms roff files into text files

roff2x Transforms roff files into other formats

soelim Reads files and replaces lines of the form .so file by the contents of the mentioned file

tbl Compiles descriptions of tables embedded within troff input files into commands that are
understood by troff

tfmtodit Creates a font file for use with groff -Tdvi

troff Is highly compatible with Unix troff; it should usually be invoked using the groff command,
which will also run preprocessors and post-processors in the appropriate order and with the
appropriate options

Linux From Scratch - Version 6.8

156

6.44. GRUB-1.98
The GRUB package contains the GRand Unified Bootloader.

Approximate build time: 0.4 SBU
Required disk space: 27.6 MB

6.44.1. Installation of GRUB
Prepare GRUB for compilation:

./configure --prefix=/usr \
 --sysconfdir=/etc \
 --disable-grub-emu-usb \
 --disable-grub-fstest \
 --disable-efiemu

The --disable switches minimize what is built by disabling features and testing programs not really needed for LFS.

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

Using GRUB to make your LFS system bootable will be discussed in Section 8.4, “Using GRUB to Set Up the Boot
Process”.

6.44.2. Contents of GRUB
Installed programs: grub-bin2h, grub-editenv, grub-install, grub-mkconfig, grub-mkdevicemap,

grub-mkelfimage, grub-mkimage, grub-mkisofs, grub-mkpasswd-pbkdf2,
grub-mkrelpath, grub-mkrescue, grub-probe, grub-reboot, grub-script-check,
grub-set-default, grub-setup

Installed directories: /usr/lib/grub, /etc/grub.d, /usr/share/grub

Short Descriptions

grub-bin2h Converts a binary file to a C header

grub-editenv A tool to edit the environment block

grub-install Install GRUB on your drive

grub-mkconfig Generate a grub config file

grub-mkdevicemap Generate a device map file automatically

grub-mkelfimage Make a bootable image of GRUB

grub-mkimage Make a bootable image of GRUB

grub-mkisofs Creates a bootable ISO image

Linux From Scratch - Version 6.8

157

grub-mkpasswd-pbkdf2 Generates an encrypted PBKDF2 password for use in the boot menu

grub-mkrelpath Makes a system pathname relative to its root

grub-mkrescue Make a bootable image of GRUB suitable for a floppy disk or CDROM/DVD

grub-probe Probe device information for a given path or device

grub-reboot Sets the default boot entry for GRUB for the next boot only

grub-script-check Checks GRUB configuration script for syntax errors

grub-set-default Sets the default boot entry for GRUB

grub-setup Set up images to boot from a device

Linux From Scratch - Version 6.8

158

6.45. Gzip-1.4
The Gzip package contains programs for compressing and decompressing files.

Approximate build time: less than 0.1 SBU
Required disk space: 3.3 MB

6.45.1. Installation of Gzip
Prepare Gzip for compilation:

./configure --prefix=/usr --bindir=/bin

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

Move some programs that do not need to be on the root filesystem:

mv -v /bin/{gzexe,uncompress,zcmp,zdiff,zegrep} /usr/bin
mv -v /bin/{zfgrep,zforce,zgrep,zless,zmore,znew} /usr/bin

6.45.2. Contents of Gzip
Installed programs: gunzip, gzexe, gzip, uncompress, zcat, zcmp, zdiff, zegrep, zfgrep, zforce, zgrep, zless,

zmore, and znew

Short Descriptions

gunzip Decompresses gzipped files

gzexe Creates self-decompressing executable files

gzip Compresses the given files using Lempel-Ziv (LZ77) coding

uncompress Decompresses compressed files

zcat Decompresses the given gzipped files to standard output

zcmp Runs cmp on gzipped files

zdiff Runs diff on gzipped files

zegrep Runs egrep on gzipped files

zfgrep Runs fgrep on gzipped files

zforce Forces a . gz extension on all given files that are gzipped files, so that gzip will not compress them
again; this can be useful when file names were truncated during a file transfer

zgrep Runs grep on gzipped files

Linux From Scratch - Version 6.8

159

zless Runs less on gzipped files

zmore Runs more on gzipped files

znew Re-compresses files from compress format to gzip format—. Z to . gz

Linux From Scratch - Version 6.8

160

6.46. IPRoute2-2.6.37
The IPRoute2 package contains programs for basic and advanced IPV4-based networking.

Approximate build time: 0.2 SBU
Required disk space: 5.7 MB

6.46.1. Installation of IPRoute2
The arpd binary included in this package is dependent on Berkeley DB. Because arpd is not a very common
requirement on a base Linux system, remove the dependency on Berkeley DB by applying the sed command below.
If the arpd binary is needed, instructions for compiling Berkeley DB can be found in the BLFS Book at http:// www.
linuxfromscratch. org/ blfs/ view/ svn/ server/ databases. html#db.

sed -i '/^TARGETS/s@arpd@@g' misc/Makefile

Fix a bug that causes the ip route get command to not produce any output:

sed -i '1289i\\tfilter.cloned = 2;' ip/iproute.c

Compile the package:

make DESTDIR=

The meaning of the make option:

DESTDIR=
This ensures that the IPRoute2 binaries will install into the correct directory. By default, DESTDIR is set to
/ usr.

This package comes with a test suite, but due to assumptions it makes, it is not possible to reliably run these tests from
within the chroot environment. If you wish to run these tests after booting into your new LFS system, ensure you
select / proc/ config. gz CONFIG_IKCONFIG_PROC ("General setup" -> "Enable access to .config through
/proc/config.gz") support into your kernel then run 'make alltests' from the testsuite/ subdirectory.

Install the package:

make DESTDIR= SBINDIR=/sbin MANDIR=/usr/share/man \
 DOCDIR=/usr/share/doc/iproute2-2.6.37 install

6.46.2. Contents of IPRoute2
Installed programs: ctstat (link to lnstat), genl, ifcfg, ifstat, ip, lnstat, nstat, routef, routel, rtacct, rtmon, rtpr,

rtstat (link to lnstat), ss, and tc
Installed directories: /etc/iproute2, /lib/tc, /usr/share/doc/iproute2-2.6.37, /usr/lib/tc

Short Descriptions

ctstat Connection status utility

genl

ifcfg A shell script wrapper for the ip command. Note that it requires the arping and rdisk programs from the
iputils package found at http:// www. skbuff. net/ iputils/.

http://www.linuxfromscratch.org/blfs/view/svn/server/databases.html#db
http://www.linuxfromscratch.org/blfs/view/svn/server/databases.html#db
http://www.skbuff.net/iputils/

Linux From Scratch - Version 6.8

161

ifstat Shows the interface statistics, including the amount of transmitted and received packets by interface

ip The main executable. It has several different functions:
ip link <device> allows users to look at the state of devices and to make changes
ip addr allows users to look at addresses and their properties, add new addresses, and delete old ones
ip neighbor allows users to look at neighbor bindings and their properties, add new neighbor entries, and
delete old ones
ip rule allows users to look at the routing policies and change them
ip route allows users to look at the routing table and change routing table rules
ip tunnel allows users to look at the IP tunnels and their properties, and change them
ip maddr allows users to look at the multicast addresses and their properties, and change them
ip mroute allows users to set, change, or delete the multicast routing
ip monitor allows users to continously monitor the state of devices, addresses and routes

lnstat Provides Linux network statistics. It is a generalized and more feature-complete replacement for the old
rtstat program

nstat Shows network statistics

routef A component of ip route. This is for flushing the routing tables

routel A component of ip route. This is for listing the routing tables

rtacct Displays the contents of / proc/ net/ rt_ acct

rtmon Route monitoring utility

rtpr Converts the output of ip -o back into a readable form

rtstat Route status utility

ss Similar to the netstat command; shows active connections

tc Traffic Controlling Executable; this is for Quality Of Service (QOS) and Class Of Service (COS)
implementations
tc qdisc allows users to setup the queueing discipline
tc class allows users to setup classes based on the queuing discipline scheduling
tc estimator allows users to estimate the network flow into a network
tc filter allows users to setup the QOS/COS packet filtering
tc policy allows users to setup the QOS/COS policies

Linux From Scratch - Version 6.8

162

6.47. Kbd-1.15.2
The Kbd package contains key-table files and keyboard utilities.

Approximate build time: less than 0.1 SBU
Required disk space: 16.0 MB

6.47.1. Installation of Kbd

The behaviour of the Backspace and Delete keys is not consistent across the keymaps in the Kbd package. The
following patch fixes this issue for i386 keymaps:

patch -Np1 -i ../kbd-1.15.2-backspace-1.patch

After patching, the Backspace key generates the character with code 127, and the Delete key generates a well-known
escape sequence.

Prepare Kbd for compilation:

./configure --prefix=/usr --datadir=/lib/kbd

The meaning of the configure options:

--datadir=/lib/kbd

This option puts keyboard layout data in a directory that will always be on the root partition instead of the default
/ usr/ share/ kbd.

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

Note

For some languages (e.g., Belarusian) the Kbd package doesn't provide a useful keymap where the stock
“by” keymap assumes the ISO-8859-5 encoding, and the CP1251 keymap is normally used. Users of such
languages have to download working keymaps separately.

Some of the scripts in the LFS-Bootscripts package depend on kbd_mode, loadkeys, openvt, and setfont. As / usr
may not be available during the early stages of booting, those binaries need to be on the root partition:

mv -v /usr/bin/{kbd_mode,loadkeys,openvt,setfont} /bin

If desired, install the documentation:

mkdir -v /usr/share/doc/kbd-1.15.2
cp -R -v doc/* \
 /usr/share/doc/kbd-1.15.2

Linux From Scratch - Version 6.8

163

6.47.2. Contents of Kbd
Installed programs: chvt, deallocvt, dumpkeys, fgconsole, getkeycodes, kbd_mode, kbdrate, loadkeys,

loadunimap, mapscrn, openvt, psfaddtable (link to psfxtable), psfgettable (link to
psfxtable), psfstriptable (link to psfxtable), psfxtable, resizecons, setfont, setkeycodes,
setleds, setmetamode, showconsolefont, showkey, unicode_start, and unicode_stop

Installed directory: /lib/kbd

Short Descriptions

chvt Changes the foreground virtual terminal

deallocvt Deallocates unused virtual terminals

dumpkeys Dumps the keyboard translation tables

fgconsole Prints the number of the active virtual terminal

getkeycodes Prints the kernel scancode-to-keycode mapping table

kbd_mode Reports or sets the keyboard mode

kbdrate Sets the keyboard repeat and delay rates

loadkeys Loads the keyboard translation tables

loadunimap Loads the kernel unicode-to-font mapping table

mapscrn An obsolete program that used to load a user-defined output character mapping table into
the console driver; this is now done by setfont

openvt Starts a program on a new virtual terminal (VT)

psfaddtable A link to psfxtable

psfgettable A link to psfxtable

psfstriptable A link to psfxtable

psfxtable Handle Unicode character tables for console fonts

resizecons Changes the kernel idea of the console size

setfont Changes the Enhanced Graphic Adapter (EGA) and Video Graphics Array (VGA) fonts on
the console

setkeycodes Loads kernel scancode-to-keycode mapping table entries; this is useful if there are unusual
keys on the keyboard

setleds Sets the keyboard flags and Light Emitting Diodes (LEDs)

setmetamode Defines the keyboard meta-key handling

showconsolefont Shows the current EGA/VGA console screen font

showkey Reports the scancodes, keycodes, and ASCII codes of the keys pressed on the keyboard

unicode_start Puts the keyboard and console in UNICODE mode. Don't use this program unless your
keymap file is in the ISO-8859-1 encoding. For other encodings, this utility produces
incorrect results.

unicode_stop Reverts keyboard and console from UNICODE mode

Linux From Scratch - Version 6.8

164

6.48. Less-436
The Less package contains a text file viewer.

Approximate build time: less than 0.1 SBU
Required disk space: 2.9 MB

6.48.1. Installation of Less
Prepare Less for compilation:

./configure --prefix=/usr --sysconfdir=/etc

The meaning of the configure options:

--sysconfdir=/etc
This option tells the programs created by the package to look in / etc for the configuration files.

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

6.48.2. Contents of Less
Installed programs: less, lessecho, and lesskey

Short Descriptions

less A file viewer or pager; it displays the contents of the given file, letting the user scroll, find strings,
and jump to marks

lessecho Needed to expand meta-characters, such as * and ?, in filenames on Unix systems

lesskey Used to specify the key bindings for less

Linux From Scratch - Version 6.8

165

6.49. Make-3.82
The Make package contains a program for compiling packages.

Approximate build time: 0.3 SBU
Required disk space: 9.7 MB

6.49.1. Installation of Make
Prepare Make for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

6.49.2. Contents of Make
Installed program: make

Short Descriptions

make Automatically determines which pieces of a package need to be (re)compiled and then issues the relevant
commands

Linux From Scratch - Version 6.8

166

6.50. Xz-5.0.1
The Xz package contains programs for compressing and decompressing files. It provides capabilities for the lzma
and the newer xz compression formats. Compressing text files with xz yields a better compression percentage than
with the traditional gzip or bzip2 commands.

Approximate build time: 0.4 SBU
Required disk space: 13 MB

6.50.1. Installation of Xz
Prepare Xz for compilation with:

./configure --prefix=/usr --docdir=/usr/share/doc/xz-5.0.1

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

6.50.2. Contents of Xz
Installed programs: lzcat (link to xz), lzcmp (link to xzdiff), lzdiff (link to xzdiff), bzdiff, lzegrep (link to

xzgrep), lzfgrep (link to xzgrep), lz (link to xz), lzmadec, lzmainfo, lzmore (link to
xzmore), unlzma (link to xz), xzcat (link to xz), xzcmp (link to xzdiff), xzdec, xzdiff,
xzegrep (link to xzgrep), xzfgrep (link to xzgrep), xzgrep, xzless, xzmore

Installed libraries: liblzma.{a,so}
Installed directories: /usr/include/lzma and /usr/share/doc/xz-5.0.1

Short Descriptions

lzcat Decompresses to standard output

lzcmp Runs cmp on LZMA compressed files

lzdiff Runs diff on LZMA compressed files

lzegrep Runs egrep on LZMA compressed files files

lzfgrep Runs fgrep on LZMA compressed files

lzgrep Runs grep on LZMA compressed files

lzless Runs less on LZMA compressed files

lzma Compresses or decompresses files using the LZMA format

lzmadec A small and fast decoder for LZMA compressed files

lzmainfo Shows information stored in the LZMA compressed file header

lzmore Runs more on LZMA compressed files

Linux From Scratch - Version 6.8

167

unlzma Decompresses files using the LZMA format

unxz Decompresses files using the XZ format

xz Compresses or decompresses files using the XZ format

xzcat Decompresses to standard output

xzcmp Runs cmp on XZ compressed files

xzdec A small and fast decoder for XZ compressed files

xzdiff Runs diff on XZ compressed files

xzegrep Runs egrep on XZ compressed files files

xzfgrep Runs fgrep on XZ compressed files

xzgrep Runs grep on XZ compressed files

xzless Runs less on XZ compressed files

xzmore Runs more on XZ compressed files

liblzma* The library implementing lossless, block-sorting data compression, using the Lempel-Ziv-Markov
chain algorithm

Linux From Scratch - Version 6.8

168

6.51. Man-DB-2.5.9
The Man-DB package contains programs for finding and viewing man pages.

Approximate build time: 0.4 SBU

Required disk space: 22 MB

6.51.1. Installation of Man-DB

Prepare Man-DB for compilation:

./configure --prefix=/usr --libexecdir=/usr/lib \
 --docdir=/usr/share/doc/man-db-2.5.9 --sysconfdir=/etc --disable-setuid \
 --with-browser=/usr/bin/lynx --with-vgrind=/usr/bin/vgrind \
 --with-grap=/usr/bin/grap

The meaning of the configure options:

--disable-setuid

This disables making the man program setuid to user man.

--with-...

These three parameters are used to set some default programs. lynx is a text-based web browser (see BLFS for
installation instructions), vgrind converts program sources to Groff input, and grap is useful for typesetting
graphs in Groff documents. The vgrind and grap programs are not normally needed for viewing manual pages.
They are not part of LFS or BLFS, but you should be able to install them yourself after finishing LFS if you
wish to do so.

Compile the package:

make

To test the results, issue:

make -k check

Note that 2 tests are known to fail as they rely on warnings output from Groff, which changed slightly in Groff-1.21.

Install the package:

make install

6.51.2. Non-English Manual Pages in LFS

The following table shows the character set that Man-DB assumes manual pages installed under
/ usr/ share/ man/ <ll> will be encoded with. In addition to this, Man-DB correctly determines if manual pages
installed in that directory are UTF-8 encoded.

Linux From Scratch - Version 6.8

169

Table 6.1. Expected character encoding of legacy 8-bit manual pages

Language (code) Encoding Language (code) Encoding

Danish (da) ISO-8859-1 Croatian (hr) ISO-8859-2

German (de) ISO-8859-1 Hungarian (hu) ISO-8859-2

English (en) ISO-8859-1 Japanese (ja) EUC-JP

Spanish (es) ISO-8859-1 Korean (ko) EUC-KR

Estonian (et) ISO-8859-1 Lithuanian (lt) ISO-8859-13

Finnish (fi) ISO-8859-1 Latvian (lv) ISO-8859-13

French (fr) ISO-8859-1 Macedonian (mk) ISO-8859-5

Irish (ga) ISO-8859-1 Polish (pl) ISO-8859-2

Galician (gl) ISO-8859-1 Romanian (ro) ISO-8859-2

Indonesian (id) ISO-8859-1 Russian (ru) KOI8-R

Icelandic (is) ISO-8859-1 Slovak (sk) ISO-8859-2

Italian (it) ISO-8859-1 Slovenian (sl) ISO-8859-2

Norwegian Bokmal
(nb)

ISO-8859-1 Serbian Latin (sr@latin) ISO-8859-2

Dutch (nl) ISO-8859-1 Serbian (sr) ISO-8859-5

Norwegian Nynorsk
(nn)

ISO-8859-1 Turkish (tr) ISO-8859-9

Norwegian (no) ISO-8859-1 Ukrainian (uk) KOI8-U

Portuguese (pt) ISO-8859-1 Vietnamese (vi) TCVN5712-1

Swedish (sv) ISO-8859-1 Simplified Chinese (zh_CN) GBK

Belarusian (be) CP1251 Simplified Chinese, Singapore
(zh_SG)

GBK

Bulgarian (bg) CP1251 Traditional Chinese, Hong Kong
(zh_HK)

BIG5HKSCS

Czech (cs) ISO-8859-2 Traditional Chinese (zh_TW) BIG5

Greek (el) ISO-8859-7

Note
Manual pages in languages not in the list are not supported.

6.51.3. Contents of Man-DB
Installed programs: accessdb, apropos (link to whatis), catman, lexgrog, man, mandb, manpath, whatis, and

zsoelim
Installed directories: /usr/lib/man-db, /usr/share/doc/man-db

Short Descriptions

accessdb Dumps the whatis database contents in human-readable form

Linux From Scratch - Version 6.8

170

apropos Searches the whatis database and displays the short descriptions of system commands that contain a
given string

catman Creates or updates the pre-formatted manual pages

lexgrog Displays one-line summary information about a given manual page

man Formats and displays the requested manual page

mandb Creates or updates the whatis database

manpath Displays the contents of $MANPATH or (if $MANPATH is not set) a suitable search path based on
the settings in man.conf and the user's environment

whatis Searches the whatis database and displays the short descriptions of system commands that contain the
given keyword as a separate word

zsoelim Reads files and replaces lines of the form .so file by the contents of the mentioned file

Linux From Scratch - Version 6.8

171

6.52. Module-Init-Tools-3.12
The Module-Init-Tools package contains programs for handling kernel modules in Linux kernels greater than or equal
to version 2.5.47.

Approximate build time: 0.1 SBU
Required disk space: 8.6 MB

6.52.1. Installation of Module-Init-Tools
To avoid a problem with regenerating the man pages when not needed, first rewrite a file that just points to another
man page:

echo '.so man5/modprobe.conf.5' > modprobe.d.5

The test suite of this package is geared towards the needs of its Maintainer. The command make check builds a
specially wrapped version of modprobe which is useless for normal operation. To run this (about 0.2 SBU), issue the
following commands (note that the make clean command is required to clean up the source tree before recompiling
for normal use):

./configure
make check
./tests/runtests
make clean

Prepare Module-Init-Tools for compilation:

./configure --prefix=/ --enable-zlib-dynamic --mandir=/usr/share/man

Compile the package:

make

Install the package:

make INSTALL=install install

The meaning of the make parameter:

INSTALL=install
Normally, make install will not install the binaries if they already exist. This option overrides that behavior by
calling install instead of using the default wrapper script.

6.52.2. Contents of Module-Init-Tools
Installed programs: depmod, insmod, insmod.static, lsmod, modinfo, modprobe, and rmmod

Short Descriptions

depmod Creates a dependency file based on the symbols it finds in the existing set of modules; this
dependency file is used by modprobe to automatically load the required modules

insmod Installs a loadable module in the running kernel

insmod.static A statically compiled version of insmod

Linux From Scratch - Version 6.8

172

lsmod Lists currently loaded modules

modinfo Examines an object file associated with a kernel module and displays any information that it
can glean

modprobe Uses a dependency file, created by depmod, to automatically load relevant modules

rmmod Unloads modules from the running kernel

Linux From Scratch - Version 6.8

173

6.53. Patch-2.6.1
The Patch package contains a program for modifying or creating files by applying a “patch” file typically created
by the diff program.

Approximate build time: less than 0.1 SBU
Required disk space: 1.9 MB

6.53.1. Installation of Patch
Apply a patch to prevent the test suite from running a test that requires ed:

patch -Np1 -i ../patch-2.6.1-test_fix-1.patch

Prepare Patch for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

6.53.2. Contents of Patch
Installed program: patch

Short Descriptions

patch Modifies files according to a patch file. A patch file is normally a difference listing created with the diff
program. By applying these differences to the original files, patch creates the patched versions.

Linux From Scratch - Version 6.8

174

6.54. Psmisc-22.13
The Psmisc package contains programs for displaying information about running processes.

Approximate build time: less than 0.1 SBU
Required disk space: 2.5 MB

6.54.1. Installation of Psmisc
Prepare Psmisc for compilation:

./configure --prefix=/usr

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

Finally, move the killall and fuser programs to the location specified by the FHS:

mv -v /usr/bin/fuser /bin
mv -v /usr/bin/killall /bin

6.54.2. Contents of Psmisc
Installed programs: fuser, killall, peekfd, prtstat, pstree, and pstree.x11 (link to pstree)

Short Descriptions

fuser Reports the Process IDs (PIDs) of processes that use the given files or file systems

killall Kills processes by name; it sends a signal to all processes running any of the given commands

peekfd Peek at file descriptors of a running process, given its PID

prtstat Prints information about a process

pstree Displays running processes as a tree

pstree.x11 Same as pstree, except that it waits for confirmation before exiting

Linux From Scratch - Version 6.8

175

6.55. Shadow-4.1.4.3
The Shadow package contains programs for handling passwords in a secure way.

Approximate build time: 0.3 SBU
Required disk space: 30 MB

6.55.1. Installation of Shadow

Note

If you would like to enforce the use of strong passwords, refer to http:// www. linuxfromscratch.
org/ blfs/ view/ svn/ postlfs/ cracklib. html for installing CrackLib prior to building Shadow. Then add
- - with- libcrack to the configure command below.

Disable the installation of the groups program and its man pages, as Coreutils provides a better version:

sed -i 's/groups$(EXEEXT) //' src/Makefile.in
find man -name Makefile.in -exec sed -i 's/groups\.1 / /' {} \;

Fix an issue with the installation of Russian man pages:

sed -i 's/man_MANS = $(man_nopam) /man_MANS = /' man/ru/Makefile.in

Instead of using the default crypt method, use the more secure SHA-512 method of password encryption, which also
allows passwords longer than 8 characters. It is also necessary to change the obsolete / var/ spool/ mail location
for user mailboxes that Shadow uses by default to the / var/ mail location used currently:

sed -i -e 's@#ENCRYPT_METHOD DES@ENCRYPT_METHOD SHA512@' \
 -e 's@/var/spool/mail@/var/mail@' etc/login.defs

Note

If you chose to build Shadow with Cracklib support, run the following:

sed -i 's@DICTPATH.*@DICTPATH\t/lib/cracklib/pw_dict@' \
 etc/login.defs

Prepare Shadow for compilation:

./configure --sysconfdir=/etc

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

Move a misplaced program to its proper location:

mv -v /usr/bin/passwd /bin

http://www.linuxfromscratch.org/blfs/view/svn/postlfs/cracklib.html
http://www.linuxfromscratch.org/blfs/view/svn/postlfs/cracklib.html

Linux From Scratch - Version 6.8

176

6.55.2. Configuring Shadow
This package contains utilities to add, modify, and delete users and groups; set and change their passwords; and
perform other administrative tasks. For a full explanation of what password shadowing means, see the doc/ HOWTO
file within the unpacked source tree. If using Shadow support, keep in mind that programs which need to verify
passwords (display managers, FTP programs, pop3 daemons, etc.) must be Shadow-compliant. That is, they need to
be able to work with shadowed passwords.

To enable shadowed passwords, run the following command:

pwconv

To enable shadowed group passwords, run:

grpconv

Shadow's stock configuration for the useradd utility has a few caveats that need some explanation. First, the default
action for the useradd utility is to create the user and a group of the same name as the user. By default the user ID
(UID) and group ID (GID) numbers will begin with 1000. This means if you don't pass parameters to useradd, each
user will be a member of a unique group on the system. If this behaviour is undesireable, you'll need to pass the - g
parameter to useradd. The default parameters are stored in the / etc/ default/ useradd file. You may need to
modify two parameters in this file to suit your particular needs.

/etc/default/useradd Parameter Explanations

GROUP=1000
This parameter sets the beginning of the group numbers used in the /etc/group file. You can modify it to anything
you desire. Note that useradd will never reuse a UID or GID. If the number identified in this parameter is used,
it will use the next available number after this. Note also that if you don't have a group 1000 on your system the
first time you use useradd without the - g parameter, you'll get a message displayed on the terminal that says:
useradd: unknown GID 1000. You may disregard this message and group number 1000 will be used.

CREATE_MAIL_SPOOL=yes
This parameter causes useradd to create a mailbox file for the newly created user. useradd will make the group
ownership of this file to the mail group with 0660 permissions. If you would prefer that these mailbox files
are not created by useradd, issue the following command:

sed -i 's/yes/no/' /etc/default/useradd

6.55.3. Setting the root password
Choose a password for user root and set it by running:

passwd root

6.55.4. Contents of Shadow
Installed programs: chage, chfn, chgpasswd, chpasswd, chsh, expiry, faillog, gpasswd, groupadd, groupdel,

groupmems, groupmod, grpck, grpconv, grpunconv, lastlog, login, logoutd, newgrp,
newusers, nologin, passwd, pwck, pwconv, pwunconv, sg (link to newgrp), su, useradd,
userdel, usermod, vigr (link to vipw), and vipw

Installed directory: /etc/default

Linux From Scratch - Version 6.8

177

Short Descriptions

chage Used to change the maximum number of days between obligatory password changes

chfn Used to change a user's full name and other information

chgpasswd Used to update group passwords in batch mode

chpasswd Used to update user passwords in batch mode

chsh Used to change a user's default login shell

expiry Checks and enforces the current password expiration policy

faillog Is used to examine the log of login failures, to set a maximum number of failures before an account
is blocked, or to reset the failure count

gpasswd Is used to add and delete members and administrators to groups

groupadd Creates a group with the given name

groupdel Deletes the group with the given name

groupmems Allows a user to administer his/her own group membership list without the requirement of super user
privileges.

groupmod Is used to modify the given group's name or GID

grpck Verifies the integrity of the group files / etc/ group and / etc/ gshadow

grpconv Creates or updates the shadow group file from the normal group file

grpunconv Updates / etc/ group from / etc/ gshadow and then deletes the latter

lastlog Reports the most recent login of all users or of a given user

login Is used by the system to let users sign on

logoutd Is a daemon used to enforce restrictions on log-on time and ports

newgrp Is used to change the current GID during a login session

newusers Is used to create or update an entire series of user accounts

nologin Displays a message that an account is not available. Designed to be used as the default shell for
accounts that have been disabled

passwd Is used to change the password for a user or group account

pwck Verifies the integrity of the password files / etc/ passwd and / etc/ shadow

pwconv Creates or updates the shadow password file from the normal password file

pwunconv Updates / etc/ passwd from / etc/ shadow and then deletes the latter

sg Executes a given command while the user's GID is set to that of the given group

su Runs a shell with substitute user and group IDs

useradd Creates a new user with the given name, or updates the default new-user information

userdel Deletes the given user account

usermod Is used to modify the given user's login name, User Identification (UID), shell, initial group, home
directory, etc.

vigr Edits the / etc/ group or / etc/ gshadow files

vipw Edits the / etc/ passwd or / etc/ shadow files

Linux From Scratch - Version 6.8

178

6.56. Sysklogd-1.5
The Sysklogd package contains programs for logging system messages, such as those given by the kernel when
unusual things happen.

Approximate build time: less than 0.1 SBU
Required disk space: 0.5 MB

6.56.1. Installation of Sysklogd
Compile the package:

make

This package does not come with a test suite.

Install the package:

make BINDIR=/sbin install

6.56.2. Configuring Sysklogd
Create a new / etc/ syslog. conf file by running the following:

cat > /etc/syslog.conf << "EOF"
Begin /etc/syslog.conf

auth,authpriv.* -/var/log/auth.log
.;auth,authpriv.none -/var/log/sys.log
daemon.* -/var/log/daemon.log
kern.* -/var/log/kern.log
mail.* -/var/log/mail.log
user.* -/var/log/user.log
*.emerg *

End /etc/syslog.conf
EOF

6.56.3. Contents of Sysklogd
Installed programs: klogd and syslogd

Short Descriptions

klogd A system daemon for intercepting and logging kernel messages

syslogd Logs the messages that system programs offer for logging. Every logged message contains at least a
date stamp and a hostname, and normally the program's name too, but that depends on how trusting the
logging daemon is told to be

Linux From Scratch - Version 6.8

179

6.57. Sysvinit-2.88dsf
The Sysvinit package contains programs for controlling the startup, running, and shutdown of the system.

Approximate build time: less than 0.1 SBU

Required disk space: 1 MB

6.57.1. Installation of Sysvinit

When run-levels are changed (for example, when halting the system), init sends termination signals to those processes
that init itself started and that should not be running in the new run-level. While doing this, init outputs messages like
“Sending processes the TERM signal” which seem to imply that it is sending these signals to all currently running
processes. To avoid this misinterpretation, modify the source so that these messages read like “Sending processes
configured via /etc/inittab the TERM signal” instead:

sed -i 's@Sending processes@& configured via /etc/inittab@g' \
 src/init.c

A maintained version of the wall program was installed earlier by Util-linux. Suppress the installation of Sysvinit's
version of this program and its man page:

sed -i -e 's/utmpdump wall/utmpdump/' \
 -e 's/mountpoint.1 wall.1/mountpoint.1/' src/Makefile

Compile the package:

make -C src

This package does not come with a test suite.

Install the package:

make -C src install

Linux From Scratch - Version 6.8

180

6.57.2. Configuring Sysvinit
Create a new file / etc/ inittab by running the following:

cat > /etc/inittab << "EOF"
Begin /etc/inittab

id:3:initdefault:

si::sysinit:/etc/rc.d/init.d/rc sysinit

l0:0:wait:/etc/rc.d/init.d/rc 0
l1:S1:wait:/etc/rc.d/init.d/rc 1
l2:2:wait:/etc/rc.d/init.d/rc 2
l3:3:wait:/etc/rc.d/init.d/rc 3
l4:4:wait:/etc/rc.d/init.d/rc 4
l5:5:wait:/etc/rc.d/init.d/rc 5
l6:6:wait:/etc/rc.d/init.d/rc 6

ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now

su:S016:once:/sbin/sulogin

1:2345:respawn:/sbin/agetty tty1 9600
2:2345:respawn:/sbin/agetty tty2 9600
3:2345:respawn:/sbin/agetty tty3 9600
4:2345:respawn:/sbin/agetty tty4 9600
5:2345:respawn:/sbin/agetty tty5 9600
6:2345:respawn:/sbin/agetty tty6 9600

End /etc/inittab
EOF

6.57.3. Contents of Sysvinit
Installed programs: bootlogd, fstab-decode, halt, init, killall5, last, lastb (link to last), mesg, mountpoint,

pidof (link to killall5), poweroff (link to halt), reboot (link to halt), runlevel, shutdown,
sulogin, telinit (link to init), and utmpdump

Short Descriptions

bootlogd Logs boot messages to a log file

fstab-decode Run a command with fstab-encoded arguments

halt Normally invokes shutdown with the - h option, except when already in run-level 0, then it
tells the kernel to halt the system; it notes in the file / var/ log/ wtmp that the system is being
brought down

init The first process to be started when the kernel has initialized the hardware which takes over the
boot process and starts all the proceses it is instructed to

Linux From Scratch - Version 6.8

181

killall5 Sends a signal to all processes, except the processes in its own session so it will not kill the shell
running the script that called it

last Shows which users last logged in (and out), searching back through the / var/ log/ wtmp file;
it also shows system boots, shutdowns, and run-level changes

lastb Shows the failed login attempts, as logged in / var/ log/ btmp

mesg Controls whether other users can send messages to the current user's terminal

mountpoint Checks if the directory is a mountpoint

pidof Reports the PIDs of the given programs

poweroff Tells the kernel to halt the system and switch off the computer (see halt)

reboot Tells the kernel to reboot the system (see halt)

runlevel Reports the previous and the current run-level, as noted in the last run-level record in
/ var/ run/ utmp

shutdown Brings the system down in a secure way, signaling all processes and notifying all logged-in users

sulogin Allows root to log in; it is normally invoked by init when the system goes into single user mode

telinit Tells init which run-level to change to

utmpdump Displays the content of the given login file in a more user-friendly format

Linux From Scratch - Version 6.8

182

6.58. Tar-1.25
The Tar package contains an archiving program.

Approximate build time: 1.9 SBU
Required disk space: 21.2 MB

6.58.1. Installation of Tar
Prepare Tar for compilation:

FORCE_UNSAFE_CONFIGURE=1 ./configure --prefix=/usr \
 --bindir=/bin --libexecdir=/usr/sbin

The meaning of the configure options:

FORCE_UNSAFE_CONFIGURE=1
This forces the test for mknod to be run as root. It is generally considered dangerous to run this test as the root
user, but as it is being run on an only partially built system, overriding it is OK.

Compile the package:

make

To test the results (about 1 SBU), issue:

make check

Install the package:

make install
make -C doc install-html docdir=/usr/share/doc/tar-1.25

6.58.2. Contents of Tar
Installed programs: rmt and tar

Short Descriptions

rmt Remotely manipulates a magnetic tape drive through an interprocess communication connection

tar Creates, extracts files from, and lists the contents of archives, also known as tarballs

Linux From Scratch - Version 6.8

183

6.59. Texinfo-4.13a
The Texinfo package contains programs for reading, writing, and converting info pages.

Approximate build time: 0.3 SBU
Required disk space: 21 MB

6.59.1. Installation of Texinfo
Prepare Texinfo for compilation:

./configure --prefix=/usr

Compile the package:

make

To test the results, issue:

make check

Install the package:

make install

Optionally, install the components belonging in a TeX installation:

make TEXMF=/usr/share/texmf install-tex

The meaning of the make parameter:

TEXMF=/usr/share/texmf
The TEXMF makefile variable holds the location of the root of the TeX tree if, for example, a TeX package
will be installed later.

The Info documentation system uses a plain text file to hold its list of menu entries. The file is located at
/ usr/ share/ info/ dir. Unfortunately, due to occasional problems in the Makefiles of various packages, it can
sometimes get out of sync with the info pages installed on the system. If the / usr/ share/ info/ dir file ever
needs to be recreated, the following optional commands will accomplish the task:

cd /usr/share/info
rm -v dir
for f in *
do install-info $f dir 2>/dev/null
done

6.59.2. Contents of Texinfo
Installed programs: info, infokey, install-info, makeinfo, pdftexi2dvi, texi2dvi, texi2pdf, and texindex
Installed directory: /usr/share/texinfo

Short Descriptions

info Used to read info pages which are similar to man pages, but often go much deeper than just
explaining all the available command line options. For example, compare man bison and info
bison.

Linux From Scratch - Version 6.8

184

infokey Compiles a source file containing Info customizations into a binary format

install-info Used to install info pages; it updates entries in the info index file

makeinfo Translates the given Texinfo source documents into info pages, plain text, or HTML

pdftexi2dvi Used to format the given Texinfo document into a Portable Document Format (PDF) file

texi2dvi Used to format the given Texinfo document into a device-independent file that can be printed

texi2pdf Used to format the given Texinfo document into a Portable Document Format (PDF) file

texindex Used to sort Texinfo index files

Linux From Scratch - Version 6.8

185

6.60. Udev-166
The Udev package contains programs for dynamic creation of device nodes.

Approximate build time: 0.2 SBU
Required disk space: 9.3 MB plus 37 MB for testfiles

6.60.1. Installation of Udev
The udev-config tarball contains LFS-specific files used to configure Udev. Unpack it into the Udev source directory:

tar -xvf ../udev-config-20100128.tar.bz2

The udev-testfiles tarball contains files needed to test udev. The file expands to an apparent size of about 37MB but
the actual disk usage is less than 7MB.

tar -xvf ../udev-166-testfiles.tar.bz2 --strip-components=1

Create some devices and directories that Udev cannot handle due to them being required very early in the boot process,
or by Udev itself:

install -dv /lib/{firmware,udev/devices/{pts,shm}}
mknod -m0666 /lib/udev/devices/null c 1 3

Prepare the package for compilation:

./configure --prefix=/usr \
 --sysconfdir=/etc --sbindir=/sbin \
 --with-rootlibdir=/lib --libexecdir=/lib/udev \
 --disable-extras --disable-introspection

The meaning of the new configure options

--with-rootlibdir=/lib
This controls where the libudev library is installed. The library needs to be in / lib because it's used by Udev
at boot time, before / usr might be available, and the default --rootlibdir is / usr/ lib.

--libexecdir=/lib/udev
This controls where Udev-internal rules and helper programs are installed.

--disable-extras
This option prevents Udev from installing helper programs and other extras which require more external libraries.
These libraries are not part of the base LFS system. See the Udev README file for more information.

--disable-introspection
This option prevents Udev's instrospection feature, which requires packages not installed as part of the base LFS
system. See the Udev README file for more information.

Compile the package:

make

Test the package.

make check

Linux From Scratch - Version 6.8

186

Install the package:

make install

Remove an empty documentation directory:

rmdir -v /usr/share/doc/udev

Now install the LFS-specific custom rules files:

cd udev-config-20100128
make install

Install the documentation that explains the LFS-specific rules files:

make install-doc

6.60.2. Contents of Udev
Installed programs: ata_id, cdrom_id, collect, create_floppy_devices, edd_id, firmware.sh, fstab_import,

path_id, scsi_id, udevadm, udevd, usb_id, write_cd_rules, and write_net_rules
Installed libraries: libudev.{a,so}
Installed directories: /etc/udev, /lib/udev, /lib/firmware

Short Descriptions

ata_id Provides Udev with a unique string and additional information (uuid, label) for an
ATA drive

cdrom_id Provides Udev with the capabilities of a CD-ROM or DVD-ROM drive

collect Given an ID for the current uevent and a list of IDs (for all target uevents), registers
the current ID and indicates whether all target IDs have been registered

create_floppy_devices Creates all possible floppy devices based on the CMOS type

edd_id Provides Udev with the EDD ID for a BIOS disk drive

firmware.sh Uploads firmware to devices

fstab_import Finds an entry in / etc/ fstab that matches the current device, and provides its
information to Udev

path_id Provides the shortest possible unique hardware path to a device

scsi_id Provides Udev with a unique SCSI identifier based on the data returned from
sending a SCSI INQUIRY command to the specified device

udevadm Generic udev administration tool: controls the udevd daemon, provides info from
the Udev database, monitors uevents, waits for uevents to finish, tests Udev
configuration, and triggers uevents for a given device

udevd A daemon that listens for uevents on the netlink socket, creates devices and runs
the configured external programs in response to these uevents

usb_id Provides Udev with information about USB devices

write_cd_rules A script which generates Udev rules to provide stable names for optical drives (see
also Section 7.10, “Creating Custom Symlinks to Devices”)

Linux From Scratch - Version 6.8

187

write_net_rules A script which generates rules to provide stable names for network interfaces (see
also Section 7.13, “Configuring the network Script”)

libudev A library interface to udev device information

/etc/udev Contains Udev configuration files, device permissions, and rules for device naming

Linux From Scratch - Version 6.8

188

6.61. Vim-7.3
The Vim package contains a powerful text editor.

Approximate build time: 1.0 SBU
Required disk space: 87 MB

Alternatives to Vim

If you prefer another editor—such as Emacs, Joe, or Nano—please refer to http:// www. linuxfromscratch.
org/ blfs/ view/ svn/ postlfs/ editors. html for suggested installation instructions.

6.61.1. Installation of Vim
First, change the default location of the vimrc configuration file to / etc:

echo '#define SYS_VIMRC_FILE "/etc/vimrc"' >> src/feature.h

Now prepare Vim for compilation:

./configure --prefix=/usr --enable-multibyte

The meaning of the configure options:

--enable-multibyte
This switch enables support for editing files in multibyte character encodings. This is needed if using a locale
with a multibyte character set. This switch is also helpful to be able to edit text files initially created in Linux
distributions like Fedora that use UTF-8 as a default character set.

Compile the package:

make

To test the results, issue:

make test

However, this test suite outputs a lot of binary data to the screen, which can cause issues with the settings of the
current terminal. This can be resolved by redirecting the output to a log file.

Install the package:

make install

Many users are used to using vi instead of vim. To allow execution of vim when users habitually enter vi, create a
symlink for both the binary and the man page in the provided languages:

ln -sv vim /usr/bin/vi
for L in /usr/share/man/{,*/}man1/vim.1; do
 ln -sv vim.1 $(dirname $L)/vi.1
done

By default, Vim's documentation is installed in / usr/ share/ vim. The following symlink allows the
documentation to be accessed via / usr/ share/ doc/ vim- 7. 3, making it consistent with the location of
documentation for other packages:

ln -sv ../vim/vim73/doc /usr/share/doc/vim-7.3

http://www.linuxfromscratch.org/blfs/view/svn/postlfs/editors.html
http://www.linuxfromscratch.org/blfs/view/svn/postlfs/editors.html

Linux From Scratch - Version 6.8

189

If an X Window System is going to be installed on the LFS system, it may be necessary to recompile Vim after
installing X. Vim comes with a GUI version of the editor that requires X and some additional libraries to be installed.
For more information on this process, refer to the Vim documentation and the Vim installation page in the BLFS
book at http:// www. linuxfromscratch. org/ blfs/ view/ svn/ postlfs/ editors. html#postlfs- editors- vim.

6.61.2. Configuring Vim

By default, vim runs in vi-incompatible mode. This may be new to users who have used other editors in the past. The
“nocompatible” setting is included below to highlight the fact that a new behavior is being used. It also reminds those
who would change to “compatible” mode that it should be the first setting in the configuration file. This is necessary
because it changes other settings, and overrides must come after this setting. Create a default vim configuration file
by running the following:

cat > /etc/vimrc << "EOF"
" Begin /etc/vimrc

set nocompatible
set backspace=2
syntax on
if (&term == "iterm") || (&term == "putty")
 set background=dark
endif

" End /etc/vimrc
EOF

The set nocompatible setting makes vim behave in a more useful way (the default) than the vi-compatible
manner. Remove the “no” to keep the old vi behavior. The set backspace=2 setting allows backspacing over line
breaks, autoindents, and the start of insert. The syntax on parameter enables vim's syntax highlighting. Finally,
the if statement with the set background=dark setting corrects vim's guess about the background color of
some terminal emulators. This gives the highlighting a better color scheme for use on the black background of these
programs.

Documentation for other available options can be obtained by running the following command:

vim -c ':options'

Note

By default, Vim only installs spell files for the English language. To install spell files for your preferred
language, download the *. spl and optionally, the *. sug files for your language and character encoding
from ftp:// ftp. vim. org/ pub/ vim/ runtime/ spell/ and save them to / usr/ share/ vim/ vim73/ spell/.

To use these spell files, some configuration in / etc/ vimrc is needed, e.g.:

set spelllang=en,ru
set spell

For more information, see the appropriate README file located at the URL above.

http://www.linuxfromscratch.org/blfs/view/svn/postlfs/editors.html#postlfs-editors-vim
ftp://ftp.vim.org/pub/vim/runtime/spell/

Linux From Scratch - Version 6.8

190

6.61.3. Contents of Vim
Installed programs: ex (link to vim), rview (link to vim), rvim (link to vim), vi (link to vim), view (link to

vim), vim, vimdiff (link to vim), vimtutor, and xxd
Installed directory: /usr/share/vim

Short Descriptions

ex Starts vim in ex mode

rview Is a restricted version of view; no shell commands can be started and view cannot be suspended

rvim Is a restricted version of vim; no shell commands can be started and vim cannot be suspended

vi Link to vim

view Starts vim in read-only mode

vim Is the editor

vimdiff Edits two or three versions of a file with vim and show differences

vimtutor Teaches the basic keys and commands of vim

xxd Creates a hex dump of the given file; it can also do the reverse, so it can be used for binary patching

Linux From Scratch - Version 6.8

191

6.62. About Debugging Symbols
Most programs and libraries are, by default, compiled with debugging symbols included (with gcc's - g option).
This means that when debugging a program or library that was compiled with debugging information included, the
debugger can provide not only memory addresses, but also the names of the routines and variables.

However, the inclusion of these debugging symbols enlarges a program or library significantly. The following is an
example of the amount of space these symbols occupy:

• A bash binary with debugging symbols: 1200 KB

• A bash binary without debugging symbols: 480 KB

• Glibc and GCC files (/ lib and / usr/ lib) with debugging symbols: 87 MB

• Glibc and GCC files without debugging symbols: 16 MB

Sizes may vary depending on which compiler and C library were used, but when comparing programs with and
without debugging symbols, the difference will usually be a factor between two and five.

Because most users will never use a debugger on their system software, a lot of disk space can be regained by removing
these symbols. The next section shows how to strip all debugging symbols from the programs and libraries.

6.63. Stripping Again
If the intended user is not a programmer and does not plan to do any debugging on the system software, the system
size can be decreased by about 90 MB by removing the debugging symbols from binaries and libraries. This causes
no inconvenience other than not being able to debug the software fully anymore.

Most people who use the command mentioned below do not experience any difficulties. However, it is easy to make
a typo and render the new system unusable, so before running the strip command, it is a good idea to make a backup
of the LFS system in its current state.

Before performing the stripping, take special care to ensure that none of the binaries that are about to be stripped
are running. If unsure whether the user entered chroot with the command given in Section 6.4, “Entering the Chroot
Environment,” first exit from chroot:

logout

Then reenter it with:

chroot $LFS /tools/bin/env -i \
 HOME=/root TERM=$TERM PS1='\u:\w\$ ' \
 PATH=/bin:/usr/bin:/sbin:/usr/sbin \
 /tools/bin/bash --login

Now the binaries and libraries can be safely stripped:

/tools/bin/find /{,usr/}{bin,lib,sbin} -type f \
 -exec /tools/bin/strip --strip-debug '{}' ';'

A large number of files will be reported as having their file format not recognized. These warnings can be safely
ignored. These warnings indicate that those files are scripts instead of binaries.

If disk space is very tight, the - - strip- all option can be used on the binaries in / {,usr/ }{bin,sbin} to
gain several more megabytes. Do not use this option on libraries—they will be destroyed.

Linux From Scratch - Version 6.8

192

6.64. Cleaning Up
From now on, when reentering the chroot environment after exiting, use the following modified chroot command:

chroot "$LFS" /usr/bin/env -i \
 HOME=/root TERM="$TERM" PS1='\u:\w\$ ' \
 PATH=/bin:/usr/bin:/sbin:/usr/sbin \
 /bin/bash --login

The reason for this is that the programs in / tools are no longer needed. Since they are no longer needed you can
delete the / tools directory if so desired.

Note

Removing / tools will also remove the temporary copies of Tcl, Expect, and DejaGNU which were used
for running the toolchain tests. If you need these programs later on, they will need to be recompiled and
re-installed. The BLFS book has instructions for this (see http:// www. linuxfromscratch. org/ blfs/).

If the virtual kernel file systems have been unmounted, either manually or through a reboot, ensure that the virtual
kernel file systems are mounted when reentering the chroot. This process was explained in Section 6.2.2, “Mounting
and Populating /dev” and Section 6.2.3, “Mounting Virtual Kernel File Systems”.

http://www.linuxfromscratch.org/blfs/

Linux From Scratch - Version 6.8

193

Chapter 7. Setting Up System Bootscripts

7.1. Introduction
This chapter details how to install and configure the LFS-Bootscripts package. Most of these scripts will work without
modification, but a few require additional configuration files because they deal with hardware-dependent information.

System-V style init scripts are employed in this book because they are widely used. For additional options, a hint
detailing the BSD style init setup is available at http:// www. linuxfromscratch. org/ hints/ downloads/ files/ bsd- init. txt.
Searching the LFS mailing lists for “depinit” will also offer additional choices.

If using an alternative style of init scripts, skip this chapter and move on to Chapter 8.

http://www.linuxfromscratch.org/hints/downloads/files/bsd-init.txt

Linux From Scratch - Version 6.8

194

7.2. LFS-Bootscripts-20100627
The LFS-Bootscripts package contains a set of scripts to start/stop the LFS system at bootup/shutdown.

Approximate build time: less than 0.1 SBU
Required disk space: 468 KB

7.2.1. Installation of LFS-Bootscripts
Install the package:

make install

7.2.2. Contents of LFS-Bootscripts
Installed scripts: checkfs, cleanfs, console, consolelog, functions, halt, ifdown, ifup, localnet, modules,

mountfs, mountkernfs, network, rc, reboot, sendsignals, setclock, static, swap, sysctl,
sysklogd, template, udev, and udev_retry

Installed directories: /etc/rc.d, /etc/sysconfig

Short Descriptions

checkfs Checks the integrity of the file systems before they are mounted (with the exception of journal
and network based file systems)

cleanfs Removes files that should not be preserved between reboots, such as those in
/ var/ run/ and / var/ lock/; it re-creates / var/ run/ utmp and removes the possibly
present / etc/ nologin, / fastboot, and / forcefsck files

console Loads the correct keymap table for the desired keyboard layout; it also sets the screen font

consolelog Sets the kernel log level to control messages reaching the console.

functions Contains common functions, such as error and status checking, that are used by several bootscripts

halt Halts the system

ifdown Assists the network script with stopping network devices

ifup Assists the network script with starting network devices

localnet Sets up the system's hostname and local loopback device

modules Loads kernel modules listed in / etc/ sysconfig/ modules, using arguments that are also
given there

mountfs Mounts all file systems, except ones that are marked noauto or are network based

mountkernfs Mounts virtual kernel file systems, such as proc

network Sets up network interfaces, such as network cards, and sets up the default gateway (where
applicable)

rc The master run-level control script; it is responsible for running all the other bootscripts
one-by-one, in a sequence determined by the name of the symbolic links being processed

reboot Reboots the system

sendsignals Makes sure every process is terminated before the system reboots or halts

setclock Resets the kernel clock to local time in case the hardware clock is not set to UTC time

Linux From Scratch - Version 6.8

195

static Provides the functionality needed to assign a static Internet Protocol (IP) address to a network
interface

swap Enables and disables swap files and partitions

sysctl Loads system configuration values from / etc/ sysctl. conf, if that file exists, into the
running kernel

sysklogd Starts and stops the system and kernel log daemons

template A template to create custom bootscripts for other daemons

udev Prepares the / dev directory and starts Udev

udev_retry Retries failed udev uevents, and copies generated rules files from / dev/ . udev to
/ etc/ udev/ rules. d if required

Linux From Scratch - Version 6.8

196

7.3. How Do These Bootscripts Work?
Linux uses a special booting facility named SysVinit that is based on a concept of run-levels. It can be quite different
from one system to another, so it cannot be assumed that because things worked in one particular Linux distribution,
they should work the same in LFS too. LFS has its own way of doing things, but it respects generally accepted
standards.

SysVinit (which will be referred to as “init” from now on) works using a run-levels scheme. There are seven
(numbered 0 to 6) run-levels (actually, there are more run-levels, but they are for special cases and are generally not
used. See init(8) for more details), and each one of those corresponds to the actions the computer is supposed
to perform when it starts up. The default run-level is 3. Here are the descriptions of the different run-levels as they
are implemented:

0: halt the computer
1: single-user mode
2: multi-user mode without networking
3: multi-user mode with networking
4: reserved for customization, otherwise does the same as 3
5: same as 4, it is usually used for GUI login (like X's xdm or KDE's kdm)
6: reboot the computer

The command used to change run-levels is init <runlevel>, where <runlevel> is the target run-level. For
example, to reboot the computer, a user could issue the init 6 command, which is an alias for the reboot command.
Likewise, init 0 is an alias for the halt command.

There are a number of directories under / etc/ rc. d that look like rc?. d (where ? is the number of the run-level)
and rcsysinit. d, all containing a number of symbolic links. Some begin with a K, the others begin with an S, and
all of them have two numbers following the initial letter. The K means to stop (kill) a service and the S means to start
a service. The numbers determine the order in which the scripts are run, from 00 to 99—the lower the number the
earlier it gets executed. When init switches to another run-level, the appropriate services are either started or stopped,
depending on the runlevel chosen.

The real scripts are in / etc/ rc. d/ init. d. They do the actual work, and the symlinks all point to them. Killing
links and starting links point to the same script in / etc/ rc. d/ init. d. This is because the scripts can be called
with different parameters like start, stop, restart, reload, and status. When a K link is encountered,
the appropriate script is run with the stop argument. When an S link is encountered, the appropriate script is run
with the start argument.

There is one exception to this explanation. Links that start with an S in the rc0. d and rc6. d directories will not
cause anything to be started. They will be called with the parameter stop to stop something. The logic behind this is
that when a user is going to reboot or halt the system, nothing needs to be started. The system only needs to be stopped.

These are descriptions of what the arguments make the scripts do:

start
The service is started.

stop
The service is stopped.

restart
The service is stopped and then started again.

Linux From Scratch - Version 6.8

197

reload
The configuration of the service is updated. This is used after the configuration file of a service was modified,
when the service does not need to be restarted.

status
Tells if the service is running and with which PIDs.

Feel free to modify the way the boot process works (after all, it is your own LFS system). The files given here are
an example of how it can be done.

7.4. Configuring the setclock Script
The setclock script reads the time from the hardware clock, also known as the BIOS or the Complementary Metal
Oxide Semiconductor (CMOS) clock. If the hardware clock is set to UTC, this script will convert the hardware clock's
time to the local time using the / etc/ localtime file (which tells the hwclock program which timezone the user is
in). There is no way to detect whether or not the hardware clock is set to UTC, so this needs to be configured manually.

The setclock is run via udev when the kernel detects the hardware capability upon boot. It can also be run manually
with the stop parameter to store the system time to the CMOS clock.

If you cannot remember whether or not the hardware clock is set to UTC, find out by running the hwclock
--localtime --show command. This will display what the current time is according to the hardware clock. If
this time matches whatever your watch says, then the hardware clock is set to local time. If the output from hwclock
is not local time, chances are it is set to UTC time. Verify this by adding or subtracting the proper amount of hours
for the timezone to the time shown by hwclock. For example, if you are currently in the MST timezone, which is
also known as GMT -0700, add seven hours to the local time.

Change the value of the UTC variable below to a value of 0 (zero) if the hardware clock is not set to UTC time.

Create a new file / etc/ sysconfig/ clock by running the following:

cat > /etc/sysconfig/clock << "EOF"
Begin /etc/sysconfig/clock

UTC=1

Set this to any options you might need to give to hwclock,
such as machine hardware clock type for Alphas.
CLOCKPARAMS=

End /etc/sysconfig/clock
EOF

A good hint explaining how to deal with time on LFS is available at http:// www. linuxfromscratch.
org/ hints/ downloads/ files/ time. txt. It explains issues such as time zones, UTC, and the TZ environment variable.

7.5. Configuring the Linux Console
This section discusses how to configure the console and consolelog bootscripts that set up the keyboard map, console
font and console kernel log level. If non-ASCII characters (e.g., the copyright sign, the British pound sign and Euro
symbol) will not be used and the keyboard is a U.S. one, much of this section can be skipped. Without the configuration
file, the console bootscript will do nothing.

http://www.linuxfromscratch.org/hints/downloads/files/time.txt
http://www.linuxfromscratch.org/hints/downloads/files/time.txt

Linux From Scratch - Version 6.8

198

The console and consolelog scripts read the / etc/ sysconfig/ console file for configuration information.
Decide which keymap and screen font will be used. Various language-specific HOWTOs can also help with this, see
http:// www. tldp. org/ HOWTO/ HOWTO- INDEX/ other- lang. html. If still in doubt, look in the / lib/ kbd directory for
valid keymaps and screen fonts. Read loadkeys(1) and setfont(8) manual pages to determine the correct
arguments for these programs.

The / etc/ sysconfig/ console file should contain lines of the form: VARIABLE="value". The following
variables are recognized:

LOGLEVEL
This variable specifies the log level for kernel messages sent to the console as set by dmesg. Valid levels are
from "1" (no messages) to "8". The default level is "7".

KEYMAP
This variable specifies the arguments for the loadkeys program, typically, the name of keymap to load, e.g.,
“es”. If this variable is not set, the bootscript will not run the loadkeys program, and the default kernel keymap
will be used.

KEYMAP_CORRECTIONS
This (rarely used) variable specifies the arguments for the second call to the loadkeys program. This is useful
if the stock keymap is not completely satisfactory and a small adjustment has to be made. E.g., to include the
Euro sign into a keymap that normally doesn't have it, set this variable to “euro2”.

FONT
This variable specifies the arguments for the setfont program. Typically, this includes the font name, “-m”, and
the name of the application character map to load. E.g., in order to load the “lat1-16” font together with the
“8859-1” application character map (as it is appropriate in the USA), set this variable to “lat1-16 -m 8859-1”. In
UTF-8 mode, the kernel uses the application character map for conversion of composed 8-bit key codes in the
keymap to UTF-8, and thus the argument of the "-m" parameter should be set to the encoding of the composed
key codes in the keymap.

UNICODE
Set this variable to “1”, “yes” or “true” in order to put the console into UTF-8 mode. This is useful in UTF-8
based locales and harmful otherwise.

LEGACY_CHARSET
For many keyboard layouts, there is no stock Unicode keymap in the Kbd package. The console bootscript will
convert an available keymap to UTF-8 on the fly if this variable is set to the encoding of the available non-UTF-8
keymap.

Some examples:

• For a non-Unicode setup, only the KEYMAP and FONT variables are generally needed. E.g., for a Polish setup,
one would use:

cat > /etc/sysconfig/console << "EOF"
Begin /etc/sysconfig/console

KEYMAP="pl2"
FONT="lat2a-16 -m 8859-2"

End /etc/sysconfig/console
EOF

http://www.tldp.org/HOWTO/HOWTO-INDEX/other-lang.html

Linux From Scratch - Version 6.8

199

• As mentioned above, it is sometimes necessary to adjust a stock keymap slightly. The following example adds
the Euro symbol to the German keymap:

cat > /etc/sysconfig/console << "EOF"
Begin /etc/sysconfig/console

KEYMAP="de-latin1"
KEYMAP_CORRECTIONS="euro2"
FONT="lat0-16 -m 8859-15"

End /etc/sysconfig/console
EOF

• The following is a Unicode-enabled example for Bulgarian, where a stock UTF-8 keymap exists:

cat > /etc/sysconfig/console << "EOF"
Begin /etc/sysconfig/console

UNICODE="1"
KEYMAP="bg_bds-utf8"
FONT="LatArCyrHeb-16"

End /etc/sysconfig/console
EOF

• Due to the use of a 512-glyph LatArCyrHeb-16 font in the previous example, bright colors are no longer
available on the Linux console unless a framebuffer is used. If one wants to have bright colors without
framebuffer and can live without characters not belonging to his language, it is still possible to use a
language-specific 256-glyph font, as illustrated below:

cat > /etc/sysconfig/console << "EOF"
Begin /etc/sysconfig/console

UNICODE="1"
KEYMAP="bg_bds-utf8"
FONT="cyr-sun16"

End /etc/sysconfig/console
EOF

Linux From Scratch - Version 6.8

200

• The following example illustrates keymap autoconversion from ISO-8859-15 to UTF-8 and enabling dead keys
in Unicode mode:

cat > /etc/sysconfig/console << "EOF"
Begin /etc/sysconfig/console

UNICODE="1"
KEYMAP="de-latin1"
KEYMAP_CORRECTIONS="euro2"
LEGACY_CHARSET="iso-8859-15"
FONT="LatArCyrHeb-16 -m 8859-15"

End /etc/sysconfig/console
EOF

• Some keymaps have dead keys (i.e., keys that don't produce a character by themselves, but put an accent on the
character produced by the next key) or define composition rules (such as: “press Ctrl+. A E to get Æ” in the
default keymap). Linux-2.6.37 interprets dead keys and composition rules in the keymap correctly only when
the source characters to be composed together are not multibyte. This deficiency doesn't affect keymaps for
European languages, because there accents are added to unaccented ASCII characters, or two ASCII characters
are composed together. However, in UTF-8 mode it is a problem, e.g., for the Greek language, where one
sometimes needs to put an accent on the letter “alpha”. The solution is either to avoid the use of UTF-8, or to
install the X window system that doesn't have this limitation in its input handling.

• For Chinese, Japanese, Korean and some other languages, the Linux console cannot be configured to display
the needed characters. Users who need such languages should install the X Window System, fonts that cover the
necessary character ranges, and the proper input method (e.g., SCIM, it supports a wide variety of languages).

Note

The / etc/ sysconfig/ console file only controls the Linux text console localization. It has nothing to
do with setting the proper keyboard layout and terminal fonts in the X Window System, with ssh sessions or
with a serial console. In such situations, limitations mentioned in the last two list items above do not apply.

7.6. Configuring the sysklogd Script
The sysklogd script invokes the syslogd program with the - m 0 option. This option turns off the periodic
timestamp mark that syslogd writes to the log files every 20 minutes by default. If you want to turn on this periodic
timestamp mark, edit the sysklogd script and make the changes accordingly. See man syslogd for more
information.

7.7. Creating the /etc/inputrc File
The inputrc file handles keyboard mapping for specific situations. This file is the startup file used by Readline —
the input-related library — used by Bash and most other shells.

Most people do not need user-specific keyboard mappings so the command below creates a global / etc/ inputrc
used by everyone who logs in. If you later decide you need to override the defaults on a per-user basis, you can create
a . inputrc file in the user's home directory with the modified mappings.

Linux From Scratch - Version 6.8

201

For more information on how to edit the inputrc file, see info bash under the Readline Init File section. info
readline is also a good source of information.

Linux From Scratch - Version 6.8

202

Below is a generic global inputrc along with comments to explain what the various options do. Note that comments
cannot be on the same line as commands. Create the file using the following command:

cat > /etc/inputrc << "EOF"
Begin /etc/inputrc
Modified by Chris Lynn <roryo@roryo.dynup.net>

Allow the command prompt to wrap to the next line
set horizontal-scroll-mode Off

Enable 8bit input
set meta-flag On
set input-meta On

Turns off 8th bit stripping
set convert-meta Off

Keep the 8th bit for display
set output-meta On

none, visible or audible
set bell-style none

All of the following map the escape sequence of the value
contained in the 1st argument to the readline specific functions
"\eOd": backward-word
"\eOc": forward-word

for linux console
"\e[1~": beginning-of-line
"\e[4~": end-of-line
"\e[5~": beginning-of-history
"\e[6~": end-of-history
"\e[3~": delete-char
"\e[2~": quoted-insert

for xterm
"\eOH": beginning-of-line
"\eOF": end-of-line

for Konsole
"\e[H": beginning-of-line
"\e[F": end-of-line

End /etc/inputrc
EOF

Linux From Scratch - Version 6.8

203

7.8. The Bash Shell Startup Files
The shell program /bin/bash (hereafter referred to as “the shell”) uses a collection of startup files to help create an
environment to run in. Each file has a specific use and may affect login and interactive environments differently. The
files in the / etc directory provide global settings. If an equivalent file exists in the home directory, it may override
the global settings.

An interactive login shell is started after a successful login, using /bin/login, by reading the / etc/ passwd file. An
interactive non-login shell is started at the command-line (e.g., [prompt]$/bin/bash). A non-interactive shell is
usually present when a shell script is running. It is non-interactive because it is processing a script and not waiting
for user input between commands.

For more information, see info bash under the Bash Startup Files and Interactive Shells section.

The files / etc/ profile and ~/ . bash_ profile are read when the shell is invoked as an interactive login shell.

The base / etc/ profile below sets some environment variables necessary for native language support. Setting
them properly results in:

• The output of programs translated into the native language

• Correct classification of characters into letters, digits and other classes. This is necessary for bash to properly
accept non-ASCII characters in command lines in non-English locales

• The correct alphabetical sorting order for the country

• Appropriate default paper size

• Correct formatting of monetary, time, and date values

Replace <ll> below with the two-letter code for the desired language (e.g., “en”) and <CC> with the two-letter
code for the appropriate country (e.g., “GB”). <charmap> should be replaced with the canonical charmap for your
chosen locale. Optional modifiers such as “@euro” may also be present.

The list of all locales supported by Glibc can be obtained by running the following command:

locale -a

Charmaps can have a number of aliases, e.g., “ISO-8859-1” is also referred to as “iso8859-1” and “iso88591”. Some
applications cannot handle the various synonyms correctly (e.g., require that “UTF-8” is written as “UTF-8”, not
“utf8”), so it is safest in most cases to choose the canonical name for a particular locale. To determine the canonical
name, run the following command, where <locale name> is the output given by locale -a for your preferred
locale (“en_GB.iso88591” in our example).

LC_ALL=<locale name> locale charmap

For the “en_GB.iso88591” locale, the above command will print:

ISO-8859-1

This results in a final locale setting of “en_GB.ISO-8859-1”. It is important that the locale found using the heuristic
above is tested prior to it being added to the Bash startup files:

LC_ALL=<locale name> locale language
LC_ALL=<locale name> locale charmap
LC_ALL=<locale name> locale int_curr_symbol
LC_ALL=<locale name> locale int_prefix

Linux From Scratch - Version 6.8

204

The above commands should print the language name, the character encoding used by the locale, the local currency,
and the prefix to dial before the telephone number in order to get into the country. If any of the commands above fail
with a message similar to the one shown below, this means that your locale was either not installed in Chapter 6 or
is not supported by the default installation of Glibc.

locale: Cannot set LC_* to default locale: No such file or directory

If this happens, you should either install the desired locale using the localedef command, or consider choosing a
different locale. Further instructions assume that there are no such error messages from Glibc.

Some packages beyond LFS may also lack support for your chosen locale. One example is the X library (part of
the X Window System), which outputs the following error message if the locale does not exactly match one of the
character map names in its internal files:

Warning: locale not supported by Xlib, locale set to C

In several cases Xlib expects that the character map will be listed in uppercase notation with canonical dashes. For
instance, "ISO-8859-1" rather than "iso88591". It is also possible to find an appropriate specification by removing
the charmap part of the locale specification. This can be checked by running the locale charmap command in both
locales. For example, one would have to change "de_DE.ISO-8859-15@euro" to "de_DE@euro" in order to get this
locale recognized by Xlib.

Other packages can also function incorrectly (but may not necessarily display any error messages) if the locale name
does not meet their expectations. In those cases, investigating how other Linux distributions support your locale might
provide some useful information.

Once the proper locale settings have been determined, create the / etc/ profile file:

cat > /etc/profile << "EOF"
Begin /etc/profile

export LANG=<ll>_<CC>.<charmap><@modifiers>

End /etc/profile
EOF

The “C” (default) and “en_US” (the recommended one for United States English users) locales are different. “C”
uses the US-ASCII 7-bit character set, and treats bytes with the high bit set as invalid characters. That's why, e.g., the
ls command substitutes them with question marks in that locale. Also, an attempt to send mail with such characters
from Mutt or Pine results in non-RFC-conforming messages being sent (the charset in the outgoing mail is indicated
as “unknown 8-bit”). So you can use the “C” locale only if you are sure that you will never need 8-bit characters.

UTF-8 based locales are not supported well by many programs. Work is in progress to document and, if possible, fix
such problems, see http:// www. linuxfromscratch. org/ blfs/ view/ svn/ introduction/ locale- issues. html.

7.9. Device and Module Handling on an LFS System
In Chapter 6, we installed the Udev package. Before we go into the details regarding how this works, a brief history
of previous methods of handling devices is in order.

Linux systems in general traditionally use a static device creation method, whereby a great many device nodes are
created under / dev (sometimes literally thousands of nodes), regardless of whether the corresponding hardware
devices actually exist. This is typically done via a MAKEDEV script, which contains a number of calls to the mknod
program with the relevant major and minor device numbers for every possible device that might exist in the world.

http://www.linuxfromscratch.org/blfs/view/svn/introduction/locale-issues.html

Linux From Scratch - Version 6.8

205

Using the Udev method, only those devices which are detected by the kernel get device nodes created for them.
Because these device nodes will be created each time the system boots, they will be stored on a tmpfs file system (a
virtual file system that resides entirely in system memory). Device nodes do not require much space, so the memory
that is used is negligible.

7.9.1. History

In February 2000, a new filesystem called devfs was merged into the 2.3.46 kernel and was made available during
the 2.4 series of stable kernels. Although it was present in the kernel source itself, this method of creating devices
dynamically never received overwhelming support from the core kernel developers.

The main problem with the approach adopted by devfs was the way it handled device detection, creation, and
naming. The latter issue, that of device node naming, was perhaps the most critical. It is generally accepted that if
device names are allowed to be configurable, then the device naming policy should be up to a system administrator,
not imposed on them by any particular developer(s). The devfs file system also suffers from race conditions that
are inherent in its design and cannot be fixed without a substantial revision to the kernel. It was marked as deprecated
for a long period – due to a lack of maintenance – and was finally removed from the kernel in June, 2006.

With the development of the unstable 2.5 kernel tree, later released as the 2.6 series of stable kernels, a new virtual
filesystem called sysfs came to be. The job of sysfs is to export a view of the system's hardware configuration
to userspace processes. With this userspace-visible representation, the possibility of seeing a userspace replacement
for devfs became much more realistic.

7.9.2. Udev Implementation

7.9.2.1. Sysfs

The sysfs filesystem was mentioned briefly above. One may wonder how sysfs knows about the devices present
on a system and what device numbers should be used for them. Drivers that have been compiled into the kernel
directly register their objects with sysfs as they are detected by the kernel. For drivers compiled as modules, this
registration will happen when the module is loaded. Once the sysfs filesystem is mounted (on / sys), data which
the built-in drivers registered with sysfs are available to userspace processes and to udevd for device node creation.

7.9.2.2. Udev Bootscript

The S10udev initscript takes care of creating device nodes when Linux is booted. The script unsets the uevent handler
from the default of /sbin/hotplug. This is done because the kernel no longer needs to call out to an external binary.
Instead udevd will listen on a netlink socket for uevents that the kernel raises. Next, the bootscript copies any static
device nodes that exist in / lib/ udev/ devices to / dev. This is necessary because some devices, directories, and
symlinks are needed before the dynamic device handling processes are available during the early stages of booting
a system, or are required by udevd itself. Creating static device nodes in / lib/ udev/ devices also provides an
easy workaround for devices that are not supported by the dynamic device handling infrastructure. The bootscript
then starts the Udev daemon, udevd, which will act on any uevents it receives. Finally, the bootscript forces the kernel
to replay uevents for any devices that have already been registered and then waits for udevd to handle them.

7.9.2.3. Device Node Creation

To obtain the right major and minor number for a device, Udev relies on the information provided by sysfs in
/ sys. For example, / sys/ class/ tty/ vcs/ dev contains the string “7:0”. This string is used by udevd to
create a device node with major number 7 and minor 0. The names and permissions of the nodes created under the

Linux From Scratch - Version 6.8

206

/ dev directory are determined by rules specified in the files within the / etc/ udev/ rules. d/ directory. These
are numbered in a similar fashion to the LFS-Bootscripts package. If udevd can't find a rule for the device it is
creating, it will default permissions to 660 and ownership to root:root. Documentation on the syntax of the Udev rules
configuration files are available in / usr/ share/ doc/ udev- 166/ writing_ udev_ rules/ index. html

7.9.2.4. Module Loading

Device drivers compiled as modules may have aliases built into them. Aliases are visible in the output of the
modinfo program and are usually related to the bus-specific identifiers of devices supported by a module. For
example, the snd-fm801 driver supports PCI devices with vendor ID 0x1319 and device ID 0x0801, and has an alias
of “pci:v00001319d00000801sv*sd*bc04sc01i*”. For most devices, the bus driver exports the alias of the driver
that would handle the device via sysfs. E.g., the / sys/ bus/ pci/ devices/ 0000:00:0d. 0/ modalias
file might contain the string “pci:v00001319d00000801sv00001319sd00001319bc04sc01i00”. The default rules
provided with Udev will cause udevd to call out to /sbin/modprobe with the contents of the MODALIAS uevent
environment variable (which should be the same as the contents of the modalias file in sysfs), thus loading all
modules whose aliases match this string after wildcard expansion.

In this example, this means that, in addition to snd-fm801, the obsolete (and unwanted) forte driver will be loaded if
it is available. See below for ways in which the loading of unwanted drivers can be prevented.

The kernel itself is also able to load modules for network protocols, filesystems and NLS support on demand.

7.9.2.5. Handling Hotpluggable/Dynamic Devices

When you plug in a device, such as a Universal Serial Bus (USB) MP3 player, the kernel recognizes that the device
is now connected and generates a uevent. This uevent is then handled by udevd as described above.

7.9.3. Problems with Loading Modules and Creating Devices

There are a few possible problems when it comes to automatically creating device nodes.

7.9.3.1. A kernel module is not loaded automatically

Udev will only load a module if it has a bus-specific alias and the bus driver properly exports the necessary aliases
to sysfs. In other cases, one should arrange module loading by other means. With Linux-2.6.37, Udev is known to
load properly-written drivers for INPUT, IDE, PCI, USB, SCSI, SERIO and FireWire devices.

To determine if the device driver you require has the necessary support for Udev, run modinfo with the module name
as the argument. Now try locating the device directory under / sys/ bus and check whether there is a modalias
file there.

If the modalias file exists in sysfs, the driver supports the device and can talk to it directly, but doesn't have the
alias, it is a bug in the driver. Load the driver without the help from Udev and expect the issue to be fixed later.

If there is no modalias file in the relevant directory under / sys/ bus, this means that the kernel developers have
not yet added modalias support to this bus type. With Linux-2.6.37, this is the case with ISA busses. Expect this issue
to be fixed in later kernel versions.

Udev is not intended to load “wrapper” drivers such as snd-pcm-oss and non-hardware drivers such as loop at all.

Linux From Scratch - Version 6.8

207

7.9.3.2. A kernel module is not loaded automatically, and Udev is not intended to load it

If the “wrapper” module only enhances the functionality provided by some other module (e.g., snd-pcm-oss enhances
the functionality of snd-pcm by making the sound cards available to OSS applications), configure modprobe to
load the wrapper after Udev loads the wrapped module. To do this, add an “install” line in any / etc/ modprobe.
d/ <filename>. conf file. For example:

install snd-pcm /sbin/modprobe -i snd-pcm ; \
 /sbin/modprobe snd-pcm-oss ; true

If the module in question is not a wrapper and is useful by itself, configure the S05modules bootscript to load this
module on system boot. To do this, add the module name to the / etc/ sysconfig/ modules file on a separate
line. This works for wrapper modules too, but is suboptimal in that case.

7.9.3.3. Udev loads some unwanted module

Either don't build the module, or blacklist it in a / etc/ modprobe. d/ blacklist. conf file as done with the
forte module in the example below:

blacklist forte

Blacklisted modules can still be loaded manually with the explicit modprobe command.

7.9.3.4. Udev creates a device incorrectly, or makes a wrong symlink

This usually happens if a rule unexpectedly matches a device. For example, a poorly-writen rule can match both a
SCSI disk (as desired) and the corresponding SCSI generic device (incorrectly) by vendor. Find the offending rule
and make it more specific, with the help of the udevadm info command.

7.9.3.5. Udev rule works unreliably

This may be another manifestation of the previous problem. If not, and your rule uses sysfs attributes, it may be
a kernel timing issue, to be fixed in later kernels. For now, you can work around it by creating a rule that waits for
the used sysfs attribute and appending it to the / etc/ udev/ rules. d/ 10- wait_ for_ sysfs. rules file
(create this file if it does not exist). Please notify the LFS Development list if you do so and it helps.

7.9.3.6. Udev does not create a device

Further text assumes that the driver is built statically into the kernel or already loaded as a module, and that you have
already checked that Udev doesn't create a misnamed device.

Udev has no information needed to create a device node if a kernel driver does not export its data to sysfs.
This is most common with third party drivers from outside the kernel tree. Create a static device node in
/ lib/ udev/ devices with the appropriate major/minor numbers (see the file devices. txt inside the kernel
documentation or the documentation provided by the third party driver vendor). The static device node will be copied
to / dev by the S10udev bootscript.

7.9.3.7. Device naming order changes randomly after rebooting

This is due to the fact that Udev, by design, handles uevents and loads modules in parallel, and thus in an unpredictable
order. This will never be “fixed”. You should not rely upon the kernel device names being stable. Instead, create your
own rules that make symlinks with stable names based on some stable attributes of the device, such as a serial number
or the output of various *_id utilities installed by Udev. See Section 7.10, “Creating Custom Symlinks to Devices”
and Section 7.13, “Configuring the network Script” for examples.

Linux From Scratch - Version 6.8

208

7.9.4. Useful Reading
Additional helpful documentation is available at the following sites:

• A Userspace Implementation of devfs http:// www. kroah. com/ linux/ talks/ ols_ 2003_ udev_ paper/ Reprint- Kroah-
Hartman- OLS2003. pdf

• The sysfs Filesystem http:// www. kernel. org/ pub/ linux/ kernel/ people/ mochel/ doc/ papers/ ols- 2005/ mochel. pdf

• Pointers to further reading http:// www. kernel. org/ pub/ linux/ utils/ kernel/ hotplug/ udev. html

7.10. Creating Custom Symlinks to Devices

7.10.1. CD-ROM symlinks
Some software that you may want to install later (e.g., various media players) expect the / dev/ cdrom and
/ dev/ dvd symlinks to exist, and to point to a CD-ROM or DVD-ROM device. Also, it may be convenient to put
references to those symlinks into / etc/ fstab. Udev comes with a script that will generate rules files to create
these symlinks for you, depending on the capabilities of each device, but you need to decide which of two modes
of operation you wish to have the script use.

First, the script can operate in “by-path” mode (used by default for USB and FireWire devices), where the rules it
creates depend on the physical path to the CD or DVD device. Second, it can operate in “by-id” mode (default for
IDE and SCSI devices), where the rules it creates depend on identification strings stored in the CD or DVD device
itself. The path is determined by Udev's path_id script, and the identification strings are read from the hardware by
its ata_id or scsi_id programs, depending on which type of device you have.

There are advantages to each approach; the correct approach to use will depend on what kinds of device changes may
happen. If you expect the physical path to the device (that is, the ports and/or slots that it plugs into) to change, for
example because you plan on moving the drive to a different IDE port or a different USB connector, then you should
use the “by-id” mode. On the other hand, if you expect the device's identification to change, for example because it
may die, and you would replace it with a different device with the same capabilities and which is plugged into the
same connectors, then you should use the “by-path” mode.

If either type of change is possible with your drive, then choose a mode based on the type of change you expect to
happen more often.

Important

External devices (for example, a USB-connected CD drive) should not use by-path persistence, because each
time the device is plugged into a new external port, its physical path will change. All externally-connected
devices will have this problem if you write Udev rules to recognize them by their physical path; the problem
is not limited to CD and DVD drives.

If you wish to see the values that the Udev scripts will use, then for the appropriate CD-ROM device, find the
corresponding directory under / sys (e.g., this can be / sys/ block/ hdd) and run a command similar to the
following:

udevadm test /sys/block/hdd

Look at the lines containing the output of various *_id programs. The “by-id” mode will use the ID_SERIAL value
if it exists and is not empty, otherwise it will use a combination of ID_MODEL and ID_REVISION. The “by-path”
mode will use the ID_PATH value.

http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-OLS2003.pdf
http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-OLS2003.pdf
http://www.kernel.org/pub/linux/kernel/people/mochel/doc/papers/ols-2005/mochel.pdf
http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html

Linux From Scratch - Version 6.8

209

If the default mode is not suitable for your situation, then the following modification can be made to the
/ lib/ udev/ rules. d/ 75- cd- aliases- generator. rules file, as follows (where mode is one of “by-id”
or “by-path”):

sed -i -e 's/"write_cd_rules"/"write_cd_rules mode"/' \
 /lib/udev/rules.d/75-cd-aliases-generator.rules

Note that it is not necessary to create the rules files or symlinks at this time, because you have bind-mounted the
host's / dev directory into the LFS system, and we assume the symlinks exist on the host. The rules and symlinks
will be created the first time you boot your LFS system.

However, if you have multiple CD-ROM devices, then the symlinks generated at that time may point to different
devices than they point to on your host, because devices are not discovered in a predictable order. The assignments
created when you first boot the LFS system will be stable, so this is only an issue if you need the symlinks
on both systems to point to the same device. If you need that, then inspect (and possibly edit) the generated
/ etc/ udev/ rules. d/ 70- persistent- cd. rules file after booting, to make sure the assigned symlinks
match what you need.

7.10.2. Dealing with duplicate devices

As explained in Section 7.9, “Device and Module Handling on an LFS System”, the order in which devices with the
same function appear in / dev is essentially random. E.g., if you have a USB web camera and a TV tuner, sometimes
/ dev/ video0 refers to the camera and / dev/ video1 refers to the tuner, and sometimes after a reboot the order
changes to the opposite one. For all classes of hardware except sound cards and network cards, this is fixable by
creating udev rules for custom persistent symlinks. The case of network cards is covered separately in Section 7.13,
“Configuring the network Script”, and sound card configuration can be found in BLFS.

For each of your devices that is likely to have this problem (even if the problem doesn't exist in your current Linux
distribution), find the corresponding directory under / sys/ class or / sys/ block. For video devices, this may
be / sys/ class/ video4linux/ videoX. Figure out the attributes that identify the device uniquely (usually,
vendor and product IDs and/or serial numbers work):

udevadm info -a -p /sys/class/video4linux/video0

Then write rules that create the symlinks, e.g.:

cat > /etc/udev/rules.d/83-duplicate_devs.rules << "EOF"

Persistent symlinks for webcam and tuner
KERNEL=="video*", ATTRS{idProduct}=="1910", ATTRS{idVendor}=="0d81", \
 SYMLINK+="webcam"
KERNEL=="video*", ATTRS{device}=="0x036f", ATTRS{vendor}=="0x109e", \
 SYMLINK+="tvtuner"

EOF

The result is that / dev/ video0 and / dev/ video1 devices still refer randomly to the tuner and the web camera
(and thus should never be used directly), but there are symlinks / dev/ tvtuner and / dev/ webcam that always
point to the correct device.

http://www.linuxfromscratch.org/blfs/view/svn/postlfs/devices.html

Linux From Scratch - Version 6.8

210

7.11. Configuring the localnet Script
Part of the job of the localnet script is setting the system's hostname. This needs to be configured in the
/ etc/ sysconfig/ network file.

Create the / etc/ sysconfig/ network file and enter a hostname by running:

echo "HOSTNAME=<lfs>" > /etc/sysconfig/network

<lfs> needs to be replaced with the name given to the computer. Do not enter the Fully Qualified Domain Name
(FQDN) here. That information will be put in the / etc/ hosts file in the next section.

7.12. Customizing the /etc/hosts File
If a network card is to be configured, decide on the IP address, fully-qualified domain name (FQDN), and possible
aliases for use in the / etc/ hosts file. The syntax is:

IP_address myhost.example.org aliases

Unless the computer is to be visible to the Internet (i.e., there is a registered domain and a valid block of assigned
IP addresses—most users do not have this), make sure that the IP address is in the private network IP address range.
Valid ranges are:

Private Network Address Range Normal Prefix
10.0.0.1 - 10.255.255.254 8
172.x.0.1 - 172.x.255.254 16
192.168.y.1 - 192.168.y.254 24

x can be any number in the range 16-31. y can be any number in the range 0-255.

A valid private IP address could be 192.168.1.1. A valid FQDN for this IP could be lfs.example.org.

Even if not using a network card, a valid FQDN is still required. This is necessary for certain programs to operate
correctly.

Create the / etc/ hosts file by running:

cat > /etc/hosts << "EOF"
Begin /etc/hosts (network card version)

127.0.0.1 localhost
<192.168.1.1> <HOSTNAME.example.org> [alias1] [alias2 ...]

End /etc/hosts (network card version)
EOF

The <192. 168. 1. 1> and <HOSTNAME. example. org> values need to be changed for specific users or
requirements (if assigned an IP address by a network/system administrator and the machine will be connected to an
existing network). The optional alias name(s) can be omitted.

Linux From Scratch - Version 6.8

211

If a network card is not going to be configured, create the / etc/ hosts file by running:

cat > /etc/hosts << "EOF"
Begin /etc/hosts (no network card version)

127.0.0.1 <HOSTNAME.example.org> <HOSTNAME> localhost

End /etc/hosts (no network card version)
EOF

7.13. Configuring the network Script
This section only applies if a network card is to be configured.

If a network card will not be used, there is likely no need to create any configuration files relating to network cards.
If that is the case, remove the network symlinks from all run-level directories (/ etc/ rc. d/ rc*. d).

7.13.1. Creating stable names for network interfaces
With Udev and modular network drivers, the network interface numbering is not persistent across reboots by default,
because the drivers are loaded in parallel and, thus, in random order. For example, on a computer having two network
cards made by Intel and Realtek, the network card manufactured by Intel may become eth0 and the Realtek card
becomes eth1. In some cases, after a reboot the cards get renumbered the other way around. To avoid this, Udev
comes with a script and some rules to assign stable names to network cards based on their MAC address.

Pre-generate the rules to ensure the same names get assigned to the same devices at every boot, including the first:

for NIC in /sys/class/net/* ; do
 INTERFACE=${NIC##*/} udevadm test --action=add $NIC
done

Now, inspect the / etc/ udev/ rules. d/ 70- persistent- net. rules file, to find out which name was
assigned to which network device:

cat /etc/udev/rules.d/70-persistent-net.rules

The file begins with a comment block followed by two lines for each NIC. The first line for each NIC is a commented
description showing its hardware IDs (e.g. its PCI vendor and device IDs, if it's a PCI card), along with its driver
in parentheses, if the driver can be found. Neither the hardware ID nor the driver is used to determine which name
to give an interface; this information is only for reference. The second line is the Udev rule that matches this NIC
and actually assigns it a name.

All Udev rules are made up of several keys, separated by commas and optional whitespace. This rule's keys and an
explanation of each of them are as follows:

• SUBSYSTEM=="net" - This tells Udev to ignore devices that are not network cards.

• ACTION=="add" - This tells Udev to ignore this rule for a uevent that isn't an add ("remove" and "change"
uevents also happen, but don't need to rename network interfaces).

• DRIVERS=="?*" - This exists so that Udev will ignore VLAN or bridge sub-interfaces (because these
sub-interfaces do not have drivers). These sub-interfaces are skipped because the name that would be assigned
would collide with their parent devices.

Linux From Scratch - Version 6.8

212

• ATTR{address} - The value of this key is the NIC's MAC address.

• ATTR{type}=="1" - This ensures the rule only matches the primary interface in the case of certain wireless
drivers, which create multiple virtual interfaces. The secondary interfaces are skipped for the same reason that
VLAN and bridge sub-interfaces are skipped: there would be a name collision otherwise.

• KERNEL=="eth*" - This key was added to the Udev rule generator to handle machines that have multiple
network interfaces, all with the same MAC address (the PS3 is one such machine). If the independent interfaces
have different basenames, this key will allow Udev to tell them apart. This is generally not necessary for most
Linux From Scratch users, but does not hurt.

• NAME - The value of this key is the name that Udev will assign to this interface.

The value of NAME is the important part. Make sure you know which name has been assigned to each of your network
cards before proceeding, and be sure to use that NAME value when creating your configuration files below.

7.13.2. Creating Network Interface Configuration Files
Which interfaces are brought up and down by the network script depends on the files and directories in the
/ etc/ sysconfig/ network- devices hierarchy. This directory should contain a sub-directory for each
interface to be configured, such as ifconfig. xyz, where “xyz” is a network interface name. Inside this directory
would be files defining the attributes to this interface, such as its IP address(es), subnet masks, and so forth.

The following command creates a sample ipv4 file for the eth0 device:

cd /etc/sysconfig/network-devices
mkdir -v ifconfig.eth0
cat > ifconfig.eth0/ipv4 << "EOF"
ONBOOT=yes
SERVICE=ipv4-static
IP=192.168.1.1
GATEWAY=192.168.1.2
PREFIX=24
BROADCAST=192.168.1.255
EOF

The values of these variables must be changed in every file to match the proper setup. If the ONBOOT variable is set
to “yes” the network script will bring up the Network Interface Card (NIC) during booting of the system. If set to
anything but “yes” the NIC will be ignored by the network script and not be brought up.

The SERVICE variable defines the method used for obtaining the IP address. The
LFS-Bootscripts package has a modular IP assignment format, and creating additional files in the
/ etc/ sysconfig/ network- devices/ services directory allows other IP assignment methods. This is
commonly used for Dynamic Host Configuration Protocol (DHCP), which is addressed in the BLFS book.

The GATEWAY variable should contain the default gateway IP address, if one is present. If not, then comment out
the variable entirely.

The PREFIX variable needs to contain the number of bits used in the subnet. Each octet in an IP address is 8 bits. If
the subnet's netmask is 255.255.255.0, then it is using the first three octets (24 bits) to specify the network number. If
the netmask is 255.255.255.240, it would be using the first 28 bits. Prefixes longer than 24 bits are commonly used by
DSL and cable-based Internet Service Providers (ISPs). In this example (PREFIX=24), the netmask is 255.255.255.0.
Adjust the PREFIX variable according to your specific subnet.

Linux From Scratch - Version 6.8

213

7.13.3. Creating the /etc/resolv.conf File
If the system is going to be connected to the Internet, it will need some means of Domain Name Service (DNS) name
resolution to resolve Internet domain names to IP addresses, and vice versa. This is best achieved by placing the IP
address of the DNS server, available from the ISP or network administrator, into / etc/ resolv. conf. Create the
file by running the following:

cat > /etc/resolv.conf << "EOF"
Begin /etc/resolv.conf

domain <Your Domain Name>
nameserver <IP address of your primary nameserver>
nameserver <IP address of your secondary nameserver>

End /etc/resolv.conf
EOF

Replace <IP address of the nameserver> with the IP address of the DNS most appropriate for the setup.
There will often be more than one entry (requirements demand secondary servers for fallback capability). If you only
need or want one DNS server, remove the second nameserver line from the file. The IP address may also be a router
on the local network.

Linux From Scratch - Version 6.8

214

Chapter 8. Making the LFS System Bootable

8.1. Introduction
It is time to make the LFS system bootable. This chapter discusses creating an fstab file, building a kernel for the
new LFS system, and installing the GRUB boot loader so that the LFS system can be selected for booting at startup.

8.2. Creating the /etc/fstab File
The / etc/ fstab file is used by some programs to determine where file systems are to be mounted by default,
in which order, and which must be checked (for integrity errors) prior to mounting. Create a new file systems table
like this:

cat > /etc/fstab << "EOF"
Begin /etc/fstab

file system mount-point type options dump fsck
order

/dev/<xxx> / <fff> defaults 1 1
/dev/<yyy> swap swap pri=1 0 0
proc /proc proc defaults 0 0
sysfs /sys sysfs defaults 0 0
devpts /dev/pts devpts gid=4,mode=620 0 0
tmpfs /dev/shm tmpfs defaults 0 0
End /etc/fstab
EOF

Replace <xxx>, <yyy>, and <fff> with the values appropriate for the system, for example, hda2, hda5, and
ext3. For details on the six fields in this file, see man 5 fstab.

The / dev/ shm mount point for tmpfs is included to allow enabling POSIX-shared memory. The kernel must have
the required support built into it for this to work (more about this is in the next section). Please note that very little
software currently uses POSIX-shared memory. Therefore, consider the / dev/ shm mount point optional. For more
information, see Documentation/ filesystems/ tmpfs. txt in the kernel source tree.

Filesystems with MS-DOS or Windows origin (i.e.: vfat, ntfs, smbfs, cifs, iso9660, udf) need the “iocharset” mount
option in order for non-ASCII characters in file names to be interpreted properly. The value of this option should be
the same as the character set of your locale, adjusted in such a way that the kernel understands it. This works if the
relevant character set definition (found under File systems -> Native Language Support) has been compiled into the
kernel or built as a module. The “codepage” option is also needed for vfat and smbfs filesystems. It should be set to the
codepage number used under MS-DOS in your country. E.g., in order to mount USB flash drives, a ru_RU.KOI8-R
user would need the following in the options portion of its mount line in / etc/ fstab:

noauto,user,quiet,showexec,iocharset=koi8r,codepage=866

The corresponding options fragment for ru_RU.UTF-8 users is:

noauto,user,quiet,showexec,iocharset=utf8,codepage=866

Linux From Scratch - Version 6.8

215

Note

In the latter case, the kernel emits the following message:

FAT: utf8 is not a recommended IO charset for FAT filesystems,
 filesystem will be case sensitive!

This negative recommendation should be ignored, since all other values of the “iocharset” option result in
wrong display of filenames in UTF-8 locales.

It is also possible to specify default codepage and iocharset values for some filesystems during kernel configuration.
The relevant parameters are named “Default NLS Option” (CONFIG_ NLS_ DEFAULT), “Default Remote NLS
Option” (CONFIG_ SMB_ NLS_ DEFAULT), “Default codepage for FAT” (CONFIG_ FAT_ DEFAULT_ CODEPAGE),
and “Default iocharset for FAT” (CONFIG_ FAT_ DEFAULT_ IOCHARSET). There is no way to specify these settings
for the ntfs filesystem at kernel compilation time.

It is possible to make the ext3 filesystem reliable across power failures for some hard disk types. To do this, add the
barrier=1 mount option to the appropriate entry in / etc/ fstab. To check if the disk drive supports this option,
run hdparm on the applicable disk drive. For example, if:

hdparm -I /dev/sda | grep NCQ

returns non-empty output, the option is supported.

Note: Logical Volume Management (LVM) based partitions cannot use the barrier option.

http://www.linuxfromscratch.org/blfs/view/cvs/general/hdparm.html

Linux From Scratch - Version 6.8

216

8.3. Linux-2.6.37
The Linux package contains the Linux kernel.

Approximate build time: 1.0 - 5.0 SBU
Required disk space: 540 - 800 MB

8.3.1. Installation of the kernel

Building the kernel involves a few steps—configuration, compilation, and installation. Read the README file in the
kernel source tree for alternative methods to the way this book configures the kernel.

Prepare for compilation by running the following command:

make mrproper

This ensures that the kernel tree is absolutely clean. The kernel team recommends that this command be issued prior
to each kernel compilation. Do not rely on the source tree being clean after un-tarring.

Configure the kernel via a menu-driven interface. For general information on kernel configuration
see http:// www. linuxfromscratch. org/ hints/ downloads/ files/ kernel- configuration. txt. BLFS has some information
regarding particular kernel configuration requirements of packages outside of LFS at http:// www. linuxfromscratch.
org/ blfs/ view/ svn/ longindex. html#kernel- config- index:

make LANG=<host_LANG_value> LC_ALL= menuconfig

The meaning of the make parameters:

LANG=<host_LANG_value> LC_ALL=

This establishes the locale setting to the one used on the host. This is needed for a proper menuconfig ncurses
interface line drawing on UTF-8 linux text console.
Be sure to replace <host_ LANG_ value> by the value of the $LANG variable from your host. If not set, you
could use instead the host's value of $LC_ ALL or $LC_ CTYPE.

Alternatively, make oldconfig may be more appropriate in some situations. See the README file for more
information.

If desired, skip kernel configuration by copying the kernel config file, . config, from the host system (assuming
it is available) to the unpacked linux- 2. 6. 37 directory. However, we do not recommend this option. It is often
better to explore all the configuration menus and create the kernel configuration from scratch.

Compile the kernel image and modules:

make

If using kernel modules, module configuration in / etc/ modprobe. d may be required. Information pertaining to
modules and kernel configuration is located in Section 7.9, “Device and Module Handling on an LFS System” and
in the kernel documentation in the linux- 2. 6. 37/ Documentation directory. Also, modprobe. conf(5)
may be of interest.

Install the modules, if the kernel configuration uses them:

make modules_install

http://www.linuxfromscratch.org/hints/downloads/files/kernel-configuration.txt
http://www.linuxfromscratch.org/blfs/view/svn/longindex.html#kernel-config-index
http://www.linuxfromscratch.org/blfs/view/svn/longindex.html#kernel-config-index

Linux From Scratch - Version 6.8

217

After kernel compilation is complete, additional steps are required to complete the installation. Some files need to
be copied to the / boot directory.

The path to the kernel image may vary depending on the platform being used. The filename below can be changed to
suit your taste, but the stem of the filename should be vmlinux to be compatible with the automatic setup of the boot
process described in the next section. The following command assumes an x86 architecture:

cp -v arch/x86/boot/bzImage /boot/vmlinux-2.6.37-lfs-6.8

System. map is a symbol file for the kernel. It maps the function entry points of every function in the kernel API, as
well as the addresses of the kernel data structures for the running kernel. It is used as a resource when investigating
kernel problems. Issue the following command to install the map file:

cp -v System.map /boot/System.map-2.6.37

The kernel configuration file . config produced by the make menuconfig step above contains all the configuration
selections for the kernel that was just compiled. It is a good idea to keep this file for future reference:

cp -v .config /boot/config-2.6.37

Install the documentation for the Linux kernel:

install -d /usr/share/doc/linux-2.6.37
cp -r Documentation/* /usr/share/doc/linux-2.6.37

It is important to note that the files in the kernel source directory are not owned by root. Whenever a package is
unpacked as user root (like we did inside chroot), the files have the user and group IDs of whatever they were on
the packager's computer. This is usually not a problem for any other package to be installed because the source tree
is removed after the installation. However, the Linux source tree is often retained for a long time. Because of this,
there is a chance that whatever user ID the packager used will be assigned to somebody on the machine. That person
would then have write access to the kernel source.

If the kernel source tree is going to be retained, run chown -R 0:0 on the linux- 2. 6. 37 directory to ensure all
files are owned by user root.

Warning

Some kernel documentation recommends creating a symlink from / usr/ src/ linux pointing to the
kernel source directory. This is specific to kernels prior to the 2.6 series and must not be created on an LFS
system as it can cause problems for packages you may wish to build once your base LFS system is complete.

Warning

The headers in the system's include directory should always be the ones against which Glibc was
compiled, that is, the sanitised headers from this Linux kernel tarball. Therefore, they should never be
replaced by either the raw kernel headers or any other kernel sanitized headers.

8.3.2. Configuring Linux Module Load Order
The / etc/ modprobe. d/ usb. conf file needs to be created so that if the USB drivers (ehci_hcd, ohci_hcd and
uhci_hcd) have been built as modules, they will be loaded in the correct order; ehci_hcd needs to be loaded prior to
ohci_hcd and uhci_hcd in order to avoid a warning being output at boot time.

Linux From Scratch - Version 6.8

218

Create a new file / etc/ modprobe. d/ usb. conf by running the following:

install -v -m755 -d /etc/modprobe.d
cat > /etc/modprobe.d/usb.conf << "EOF"
Begin /etc/modprobe.d/usb.conf

install ohci_hcd /sbin/modprobe ehci_hcd ; /sbin/modprobe -i ohci_hcd ; true
install uhci_hcd /sbin/modprobe ehci_hcd ; /sbin/modprobe -i uhci_hcd ; true

End /etc/modprobe.d/usb.conf
EOF

8.3.3. Contents of Linux
Installed files: config-2.6.37, vmlinux-2.6.37-lfs-6.8-2.6.37, and System.map-2.6.37
Installed directories: /lib/modules, /usr/share/doc/linux-2.6.37

Short Descriptions

config-2.6.37 Contains all the configuration selections for the kernel

vmlinux-2.6.37-lfs-6.8 The engine of the Linux system. When turning on the computer, the kernel is
the first part of the operating system that gets loaded. It detects and initializes all
components of the computer's hardware, then makes these components available
as a tree of files to the software and turns a single CPU into a multitasking machine
capable of running scores of programs seemingly at the same time

System.map-2.6.37 A list of addresses and symbols; it maps the entry points and addresses of all the
functions and data structures in the kernel

Linux From Scratch - Version 6.8

219

8.4. Using GRUB to Set Up the Boot Process

8.4.1. Introduction

Boot loading can be a complex area, so a few cautionary words are in order. Be familiar with the current boot loader
and any other operating systems present on the hard drive(s) that need to be bootable. Make sure that an emergency
boot disk is ready to “rescue” the computer if the computer becomes unusable (un-bootable).

The procedure involves writing some special GRUB files to specific locations on the hard drive. We highly
recommend creating a GRUB boot floppy diskette as a backup. Insert a blank floppy diskette and run the following
commands:

cd /tmp
grub-mkrescue --output=grub-img.iso
dd if=grub-img.iso of=/dev/fd0 bs=1440 count=1

Alternatively, a boot CD can be created by using your host system's CD burning tools to burn the grub- img. iso
on to a blank CD.

GRUB uses its own naming structure for drives and partitions in the form of (hdn,m), where n is the hard drive number
and m is the partition number. The hard drive number starts from zero, but the partition number starts from one for
normal partitions and five for extended partitions. Note that this is different from earlier versions where both numbers
started from zero. For example, partition sda1 is (hd0,1) to GRUB and sdb3 is (hd1,3). In contrast to Linux, GRUB
does not consider CD-ROM drives to be hard drives. For example, if using a CD on hdb and a second hard drive
on hdc, that second hard drive would still be (hd1).

You can determine what GRUB thinks your disk devices are by running:

grub-mkdevicemap --device-map=device.map
cat device.map

The location of the boot partition is a choice of the user that affects the configuration. One recommendation is to
have a separate small (suggested size is 100 MB) partition just for boot information. That way each build, whether
LFS or some commercial distro, can access the same boot files and access can be made from any booted system. If
you choose to do this, you will need to mount the separate partition, move all files in the current / boot directory
(e.g. the linux kernel you just built in the previous section) to the new partition. You will then need to unmount the
partition and remount it as / boot. If you do this, be sure to update / etc/ fstab.

Using the current lfs partition will also work, but configuration for multiple systems is more difficult.

8.4.2. Setting Up the Configuration

Using the above information, determine the appropriate designator for the root partition (or boot partition, if a separate
one is used). For the following example, it is assumed that the root (or separate boot) partition is sda2.

Install the GRUB files into / boot/ grub:

grub-install --grub-setup=/bin/true /dev/sda

We use --grub-setup=/bin/true for now to prevent updating the Master Boot Record (MBR). In this way, we can test
our installation before committing to a change that is hard to revert.

Linux From Scratch - Version 6.8

220

Generate / boot/ grub/ grub. cfg:

grub-mkconfig -o /boot/grub/grub.cfg

Here grub-mkconfig uses the files in / etc/ grub. d/ to determine the contents of this file. The configuration file
will look something like:

#
DO NOT EDIT THIS FILE
#
It is automatically generated by /usr/sbin/grub-mkconfig using templates
from /etc/grub.d and settings from /etc/default/grub
#

BEGIN /etc/grub.d/00_header
set default=0
set timeout=5
END /etc/grub.d/00_header

BEGIN /etc/grub.d/10_linux
menuentry "GNU/Linux, Linux 2.6.37-lfs-6.8" {
 insmod ext2
 set root=(hd0,2)
 search --no-floppy --fs-uuid --set 915852a7-859e-45a6-9ff0-d3ebfdb5cea2
 linux /boot/vmlinux-2.6.37-lfs-6.8 root=/dev/sda2 ro
}
menuentry "GNU/Linux, Linux 2.6.37-lfs-6.8" (recovery mode)" {
 insmod ext2
 set root=(hd0,2)
 search --no-floppy --fs-uuid --set 915852a7-859e-45a6-9ff0-d3ebfdb5cea2
 linux /boot/vmlinux-2.6.37-lfs-6.8 root=/dev/sda2 ro single
}
menuentry "GNU/Linux, Linux 2.6.28-11-server" {
 insmod ext2
 set root=(hd0,2)
 search --no-floppy --fs-uuid --set 6b4c0339-5501-4a85-8351-e398e5252be8
 linux /boot/vmlinuz-2.6.28-11-server root=UUID=6b4c0339-5501-4a85-8351-e398e5252be8 ro
 initrd /boot/initrd.img-2.6.28-11-server
}
menuentry "GNU/Linux, Linux 2.6.28-11-server (recovery mode)" {
 insmod ext2
 set root=(hd0,2)
 search --no-floppy --fs-uuid --set 6b4c0339-5501-4a85-8351-e398e5252be8
 linux /boot/vmlinuz-2.6.28-11-server root=UUID=6b4c0339-5501-4a85-8351-e398e5252be8 ro single
 initrd /boot/initrd.img-2.6.28-11-server
}
END /etc/grub.d/10_linux

BEGIN /etc/grub.d/30_os-prober
END /etc/grub.d/30_os-prober

BEGIN /etc/grub.d/40_custom
This file provides an easy way to add custom menu entries. Simply type the
menu entries you want to add after this comment. Be careful not to change
the 'exec tail' line above.
END /etc/grub.d/40_custom

Linux From Scratch - Version 6.8

221

Note

• Even though there is a warning not to edit the file, you can do so as long as you do not re-run
grub-mkconfig.

• The search lines are generally not useful for LFS systems as that command only sets an internal GRUB
variable used to find the kernel image. The set root command provides the same capability without the
overhead of searching.

• The set root and insmod ext2 commands can be moved out of the menuentry sections to apply to all
sections of the file. This leads to a simple section like:

menuentry "Linux 2.6.37-lfs-6.8" {
linux /boot/vmlinux-2.6.37-lfs-6.8 root=/dev/sda2 ro
}

• Passing a UUID to the kernel requires an initial ram disk (initrd) not built by LFS.

• If the / boot partition is installed on a separate partition, the linux and initrd lines should not have the
string /boot prefixed to the file names.

• In this example the kernel files for a Ubuntu installation are also found in / boot.

8.4.3. Testing the Configuration
The core image of GRUB is also a Multiboot kernel, so if you already have GRUB Legacy loaded you can load
GRUB-1.98 through your old boot loader. To accomplish this, you will need to exit the chroot environment now and
re-enter it in the next section to finish the few remaining portions of the book.

/sbin/reboot
...
grub> root (hd0,1)
grub> kernel /boot/grub/core.img
grub> boot

Note that the GRUB commands above are assumed to be GRUB Legacy. At this point the GRUB prompt will appear
(very similar to GRUB Legacy) and you can explore the interface or boot to one of the systems in the grub.cfg file.

8.4.4. Updating the Master Boot Record
If you tested the GRUB configuration as specified above, re-enter the chroot environment.

Warning

The following command will overwrite the current boot loader. Do not run the command if this is not
desired, for example, if using a third party boot manager to manage the Master Boot Record (MBR).

Update the MBR with:

grub-setup '<DEVICE>'

Change the DEVICE above to your boot disk, normally '(hd0)' or /dev/sda. If using (hd0) be sure to escape the
parentheses with backslashes or single quotes to prevent the shell from interpreting them as a sub-shell.

Linux From Scratch - Version 6.8

222

This program uses the following defaults and are correct if you did not deviate from the instructions above:

• boot image - boot.img

• core image - core.img

• directory - /boot/grub

• device map - device.map

• default root setting - guessed

Note

The root setting is the default value if a 'set root' instruction is not found in grub.cfg. This is the partition that
is searched for the kernel and other supporting files. It is different from the 'root=' parameter on the 'linux'
line in the configuration line. The latter is the partition the kernel mounts as '/'. In the example grub.cfg
above, both values point to /dev/sda2, but if there is a separate boot partition, they will be different.

Linux From Scratch - Version 6.8

223

Chapter 9. The End

9.1. The End
Well done! The new LFS system is installed! We wish you much success with your shiny new custom-built Linux
system.

It may be a good idea to create an / etc/ lfs- release file. By having this file, it is very easy for you (and for
us if you need to ask for help at some point) to find out which LFS version is installed on the system. Create this
file by running:

echo 6.8 > /etc/lfs-release

9.2. Get Counted
Now that you have finished the book, do you want to be counted as an LFS user? Head over to http:// www.
linuxfromscratch. org/ cgi- bin/ lfscounter. cgi and register as an LFS user by entering your name and the first LFS
version you have used.

Let's reboot into LFS now.

9.3. Rebooting the System
Now that all of the software has been installed, it is time to reboot your computer. However, you should be aware of a
few things. The system you have created in this book is quite minimal, and most likely will not have the functionality
you would need to be able to continue forward. By installing a few extra packages from the BLFS book while still
in our current chroot environment, you can leave yourself in a much better position to continue on once you reboot
into your new LFS installation. Installing a text mode web browser, such as Lynx, you can easily view the BLFS
book in one virtual terminal, while building packages in another. The GPM package will also allow you to perform
copy/paste actions in your virtual terminals. Lastly, if you are in a situation where static IP configuration does not
meet your networking requirements, installing packages such as Dhcpcd or PPP at this point might also be useful.

Now that we have said that, lets move on to booting our shiny new LFS installation for the first time! First exit from
the chroot environment:

logout

Then unmount the virtual file systems:

umount -v $LFS/dev/pts
umount -v $LFS/dev/shm
umount -v $LFS/dev
umount -v $LFS/proc
umount -v $LFS/sys

Unmount the LFS file system itself:

umount -v $LFS

http://www.linuxfromscratch.org/cgi-bin/lfscounter.cgi
http://www.linuxfromscratch.org/cgi-bin/lfscounter.cgi

Linux From Scratch - Version 6.8

224

If multiple partitions were created, unmount the other partitions before unmounting the main one, like this:

umount -v $LFS/usr
umount -v $LFS/home
umount -v $LFS

Now, reboot the system with:

shutdown -r now

Assuming the GRUB boot loader was set up as outlined earlier, the menu is set to boot LFS 6.8 automatically.

When the reboot is complete, the LFS system is ready for use and more software may be added to suit your needs.

9.4. What Now?
Thank you for reading this LFS book. We hope that you have found this book helpful and have learned more about
the system creation process.

Now that the LFS system is installed, you may be wondering “What next?” To answer that question, we have compiled
a list of resources for you.

• Maintenance

Bugs and security notices are reported regularly for all software. Since an LFS system is compiled from source,
it is up to you to keep abreast of such reports. There are several online resources that track such reports, some of
which are shown below:

• Freshmeat.net (http:// freshmeat. net/)

Freshmeat can notify you (via email) of new versions of packages installed on your system.

• CERT (Computer Emergency Response Team)

CERT has a mailing list that publishes security alerts concerning various operating systems and applications.
Subscription information is available at http:// www. us- cert. gov/ cas/ signup. html.

• Bugtraq

Bugtraq is a full-disclosure computer security mailing list. It publishes newly discovered security issues, and
occasionally potential fixes for them. Subscription information is available at http:// www. securityfocus. com/
archive.

• Beyond Linux From Scratch

The Beyond Linux From Scratch book covers installation procedures for a wide range of software beyond the
scope of the LFS Book. The BLFS project is located at http:// www. linuxfromscratch. org/ blfs/.

• LFS Hints

The LFS Hints are a collection of educational documents submitted by volunteers in the LFS community. The
hints are available at http:// www. linuxfromscratch. org/ hints/ list. html.

• Mailing lists

There are several LFS mailing lists you may subscribe to if you are in need of help, want to stay current with
the latest developments, want to contribute to the project, and more. See Chapter 1 - Mailing Lists for more
information.

http://freshmeat.net/
http://www.cert.org/
http://www.us-cert.gov/cas/signup.html
http://www.securityfocus.com/archive
http://www.securityfocus.com/archive
http://www.linuxfromscratch.org/blfs/
http://www.linuxfromscratch.org/hints/list.html

Linux From Scratch - Version 6.8

225

• The Linux Documentation Project

The goal of The Linux Documentation Project (TLDP) is to collaborate on all of the issues of Linux
documentation. The TLDP features a large collection of HOWTOs, guides, and man pages. It is located at http://
www. tldp. org/.

http://www.tldp.org/
http://www.tldp.org/

Linux From Scratch - Version 6.8

Part IV. Appendices

Linux From Scratch - Version 6.8

227

Appendix A. Acronyms and Terms
ABI Application Binary Interface

ALFS Automated Linux From Scratch

ALSA Advanced Linux Sound Architecture

API Application Programming Interface

ASCII American Standard Code for Information Interchange

BIOS Basic Input/Output System

BLFS Beyond Linux From Scratch

BSD Berkeley Software Distribution

chroot change root

CMOS Complementary Metal Oxide Semiconductor

COS Class Of Service

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CVS Concurrent Versions System

DHCP Dynamic Host Configuration Protocol

DNS Domain Name Service

EGA Enhanced Graphics Adapter

ELF Executable and Linkable Format

EOF End of File

EQN equation

EVMS Enterprise Volume Management System

ext2 second extended file system

ext3 third extended file system

ext4 fourth extended file system

FAQ Frequently Asked Questions

FHS Filesystem Hierarchy Standard

FIFO First-In, First Out

FQDN Fully Qualified Domain Name

FTP File Transfer Protocol

GB Gigabytes

GCC GNU Compiler Collection

GID Group Identifier

GMT Greenwich Mean Time

GPG GNU Privacy Guard

Linux From Scratch - Version 6.8

228

HTML Hypertext Markup Language

IDE Integrated Drive Electronics

IEEE Institute of Electrical and Electronic Engineers

IO Input/Output

IP Internet Protocol

IPC Inter-Process Communication

IRC Internet Relay Chat

ISO International Organization for Standardization

ISP Internet Service Provider

KB Kilobytes

LED Light Emitting Diode

LFS Linux From Scratch

LSB Linux Standard Base

MB Megabytes

MBR Master Boot Record

MD5 Message Digest 5

NIC Network Interface Card

NLS Native Language Support

NNTP Network News Transport Protocol

NPTL Native POSIX Threading Library

OSS Open Sound System

PCH Pre-Compiled Headers

PCRE Perl Compatible Regular Expression

PID Process Identifier

PLFS Pure Linux From Scratch

PTY pseudo terminal

QA Quality Assurance

QOS Quality Of Service

RAM Random Access Memory

RPC Remote Procedure Call

RTC Real Time Clock

SBU Standard Build Unit

SCO The Santa Cruz Operation

SGR Select Graphic Rendition

SHA1 Secure-Hash Algorithm 1

SMP Symmetric Multi-Processor

Linux From Scratch - Version 6.8

229

TLDP The Linux Documentation Project

TFTP Trivial File Transfer Protocol

TLS Thread-Local Storage

UID User Identifier

umask user file-creation mask

USB Universal Serial Bus

UTC Coordinated Universal Time

UUID Universally Unique Identifier

VC Virtual Console

VGA Video Graphics Array

VT Virtual Terminal

Linux From Scratch - Version 6.8

230

Appendix B. Acknowledgments
We would like to thank the following people and organizations for their contributions to the Linux From Scratch
Project.

• Gerard Beekmans <gerard@linuxfromscratch.org> – LFS Creator, LFS Project Leader

• Matthew Burgess <matthew@linuxfromscratch.org> – LFS Project Leader, LFS Technical Writer/Editor

• Bruce Dubbs <bdubbs@linuxfromscratch.org> – LFS Release Manager, LFS Technical Writer/Editor

• Jim Gifford <jim@linuxfromscratch.org> – CLFS Project Co-Leader

• Bryan Kadzban <bryan@linuxfromscratch.org> – LFS Technical Writer

• Randy McMurchy <randy@linuxfromscratch.org> – BLFS Project Leader, LFS Editor

• DJ Lucas <dj@linuxfromscratch.org> – LFS and BLFS Editor

• Ken Moffat <ken@linuxfromscratch.org> – LFS and CLFS Editor

• Ryan Oliver <ryan@linuxfromscratch.org> – CLFS Project Co-Leader

• Countless other people on the various LFS and BLFS mailing lists who helped make this book possible by
giving their suggestions, testing the book, and submitting bug reports, instructions, and their experiences with
installing various packages.

Translators
• Manuel Canales Esparcia <macana@macana-es.com> – Spanish LFS translation project

• Johan Lenglet <johan@linuxfromscratch.org> – French LFS translation project

• Anderson Lizardo <lizardo@linuxfromscratch.org> – Portuguese LFS translation project

• Thomas Reitelbach <tr@erdfunkstelle.de> – German LFS translation project

Mirror Maintainers

North American Mirrors

• Scott Kveton <scott@osuosl.org> – lfs.oregonstate.edu mirror

• William Astle <lost@l-w.net> – ca.linuxfromscratch.org mirror

• Eujon Sellers <jpolen@rackspace.com> – lfs.introspeed.com mirror

• Justin Knierim <tim@idge.net> – lfs-matrix.net mirror

South American Mirrors

• Manuel Canales Esparcia <manuel@linuxfromscratch.org> – lfsmirror.lfs-es.info mirror

• Luis Falcon <Luis Falcon> – torredehanoi.org mirror

European Mirrors

• Guido Passet <guido@primerelay.net> – nl.linuxfromscratch.org mirror

• Bastiaan Jacques <baafie@planet.nl> – lfs.pagefault.net mirror

• Sven Cranshoff <sven.cranshoff@lineo.be> – lfs.lineo.be mirror

mailto:gerard@linuxfromscratch.org
mailto:matthew@linuxfromscratch.org
mailto:bdubbs@linuxfromscratch.org
mailto:jim@linuxfromscratch.org
mailto:bryan@linuxfromscratch.org
mailto:randy@linuxfromscratch.org
mailto:dj@linuxfromscratch.org
mailto:ken@linuxfromscratch.org
mailto:ryan@linuxfromscratch.org
mailto:macana@macana-es.com
mailto:johan@linuxfromscratch.org
mailto:lizardo@linuxfromscratch.org
mailto:tr@erdfunkstelle.de
mailto:scott@osuosl.org
mailto:lost@l-w.net
mailto:eujon.sellers@gmail.com
mailto:justin@knierim.org
mailto:manuel@linuxfromscratch.org
mailto:lfalcon@thymbra.com
mailto:guido@primerelay.net
mailto:baafie@planet.nl
mailto:sven.cranshoff@lineo.be

Linux From Scratch - Version 6.8

231

• Scarlet Belgium – lfs.scarlet.be mirror

• Sebastian Faulborn <info@aliensoft.org> – lfs.aliensoft.org mirror

• Stuart Fox <stuart@dontuse.ms> – lfs.dontuse.ms mirror

• Ralf Uhlemann <admin@realhost.de> – lfs.oss-mirror.org mirror

• Antonin Sprinzl <Antonin.Sprinzl@tuwien.ac.at> – at.linuxfromscratch.org mirror

• Fredrik Danerklint <fredan-lfs@fredan.org> – se.linuxfromscratch.org mirror

• Franck <franck@linuxpourtous.com> – lfs.linuxpourtous.com mirror

• Philippe Baqué <baque@cict.fr> – lfs.cict.fr mirror

• Vitaly Chekasin <gyouja@pilgrims.ru> – lfs.pilgrims.ru mirror

• Benjamin Heil <kontakt@wankoo.org> – lfs.wankoo.org mirror

Asian Mirrors

• Satit Phermsawang <satit@wbac.ac.th> – lfs.phayoune.org mirror

• Shizunet Co.,Ltd. <info@shizu-net.jp> – lfs.mirror.shizu-net.jp mirror

• Init World <http://www.initworld.com/> – lfs.initworld.com mirror

Australian Mirrors

• Jason Andrade <jason@dstc.edu.au> – au.linuxfromscratch.org mirror

Former Project Team Members
• Christine Barczak <theladyskye@linuxfromscratch.org> – LFS Book Editor

• Archaic <archaic@linuxfromscratch.org> – LFS Technical Writer/Editor, HLFS Project Leader, BLFS Editor,
Hints and Patches Project Maintainer

• Nathan Coulson <nathan@linuxfromscratch.org> – LFS-Bootscripts Maintainer

• Timothy Bauscher

• Robert Briggs

• Ian Chilton

• Jeroen Coumans <jeroen@linuxfromscratch.org> – Website Developer, FAQ Maintainer

• Manuel Canales Esparcia <manuel@linuxfromscratch.org> – LFS/BLFS/HLFS XML and XSL Maintainer

• Alex Groenewoud – LFS Technical Writer

• Marc Heerdink

• Jeremy Huntwork <jhuntwork@linuxfromscratch.org> – LFS Technical Writer, LFS LiveCD Maintainer

• Mark Hymers

• Seth W. Klein – FAQ maintainer

• Nicholas Leippe <nicholas@linuxfromscratch.org> – Wiki Maintainer

• Anderson Lizardo <lizardo@linuxfromscratch.org> – Website Backend-Scripts Maintainer

• Dan Nicholson <dnicholson@linuxfromscratch.org> – LFS and BLFS Editor

mailto:info@aliensoft.org
mailto:stuart@dontuse.ms
mailto:admin@realhost.de
mailto:Antonin.Sprinzl@tuwien.ac.at
mailto:fredan-lfs@fredan.org
mailto:franck@linuxpourtous.com
mailto:baque@cict.fr
mailto:gyouja@pilgrims.ru
mailto:kontakt@wankoo.org
mailto:satit@wbac.ac.th
mailto:info@shizu-net.jp
http://www.initworld.com/
mailto:jason@dstc.edu.au
mailto:theladyskye@linuxfromscratch.org
mailto:nathan@linuxfromscratch.org
mailto:jeroen@linuxfromscratch.org
mailto:manuel@linuxfromscratch.org
mailto:jhuntwork@linuxfromscratch.org
mailto:nicholas@linuxfromscratch.org
mailto:lizardo@linuxfromscratch.org
mailto:dnicholson@linuxfromscratch.org

Linux From Scratch - Version 6.8

232

• Alexander E. Patrakov <alexander@linuxfromscratch.org> – LFS Technical Writer, LFS Internationalization
Editor, LFS Live CD Maintainer

• Simon Perreault

• Scot Mc Pherson <scot@linuxfromscratch.org> – LFS NNTP Gateway Maintainer

• Greg Schafer <gschafer@zip.com.au> – LFS Technical Writer and Architect of the Next Generation
64-bit-enabling Build Method

• Jesse Tie-Ten-Quee – LFS Technical Writer

• James Robertson <jwrober@linuxfromscratch.org> – Bugzilla Maintainer

• Tushar Teredesai <tushar@linuxfromscratch.org> – BLFS Book Editor, Hints and Patches Project Leader

• Jeremy Utley <jeremy@linuxfromscratch.org> – LFS Technical Writer, Bugzilla Maintainer, LFS-Bootscripts
Maintainer

• Zack Winkles <zwinkles@gmail.com> – LFS Technical Writer

mailto:alexander@linuxfromscratch.org
mailto:scot@linuxfromscratch.org
mailto:gschafer@zip.com.au
mailto:jwrober@linuxfromscratch.org
mailto:tushar@linuxfromscratch.org
mailto:jeremy@linuxfromscratch.org
mailto:zwinkles@gmail.com

Linux From Scratch - Version 6.8

233

Appendix C. Dependencies
Every package built in LFS relies on one or more other packages in order to build and install properly. Some packages
even participate in circular dependencies, that is, the first package depends on the second which in turn depends on
the first. Because of these dependencies, the order in which packages are built in LFS is very important. The purpose
of this page is to document the dependencies of each package built in LFS.

For each package we build, we have listed three, and sometimes four, types of dependencies. The first lists what
other packages need to be available in order to compile and install the package in question. The second lists what
packages, in addition to those on the first list, need to be available in order to run the test suites. The third list of
dependencies are packages that require this package to be built and installed in its final location before they are built
and installed. In most cases, this is because these packages will hardcode paths to binaries within their scripts. If not
built in a certain order, this could result in paths of /tools/bin/[binary] being placed inside scripts installed to the final
system. This is obviously not desirable.

The last list of dependencies are optional packages that are not addressed in LFS, but could be useful to the user.
These packages may have additional mandatory or optional dependencies of their own. For these dependencies, the
recommeded practice is to install them after completion of the LFS book and then go back an rebuild the LFS package.
In several cases, reinstallation is addressed in BLFS.

Autoconf
Installation depends on: Bash, Coreutils, Grep, M4, Make, Perl, Sed, and Texinfo
Test suite depends on: Automake, Diffutils, Findutils, GCC, and Libtool
Must be installed before: Automake
Optional dependencies: Emacs

Automake
Installation depends on: Autoconf, Bash, Coreutils, Gettext, Grep, M4, Make, Perl, Sed, and Texinfo
Test suite depends on: Binutils, Bison, Bzip2, DejaGNU, Diffutils, Expect, Findutils, Flex, GCC, Gettext,

Gzip, Libtool, and Tar.
Must be installed before: None
Optional dependencies: None

Bash
Installation depends on: Bash, Binutils, Bison, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Ncurses,

Patch, Readline, Sed, and Texinfo
Test suite depends on: None
Must be installed before: None
Optional dependencies: Xorg

Binutils
Installation depends on: Bash, Binutils, Coreutils, Diffutils, File, Gawk, GCC, Glibc, Grep, Make, Perl, Sed,

Texinfo and Zlib
Test suite depends on: DejaGNU and Expect
Must be installed before: None
Optional dependencies: None

Linux From Scratch - Version 6.8

234

Bison
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, M4, Make, and Sed
Test suite depends on: Diffutils and Findutils
Must be installed before: Flex, Kbd, and Tar
Optional dependencies: Doxygen (test suite)

Bzip2
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Make, and Patch
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Coreutils
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, GMP, Grep, Make, Patch, Perl, Sed,

and Texinfo
Test suite depends on: Diffutils, E2fsprogs, Findutils, and Util-linux
Must be installed before: Bash, Diffutils, Findutils, Man-DB, and Udev
Optional dependencies: Perl Expect and IO:Tty modules (for test suite)

DejaGNU
Installation depends on: Bash, Coreutils, Diffutils, GCC, Grep, Make, and Sed
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

Diffutils
Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Gettext, Glibc, Grep, Make, Sed, and Texinfo
Test suite depends on: Diffutils, Perl
Must be installed before: None
Optional dependencies: None

Expect
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Patch, Sed, and Tcl
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

E2fsprogs
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Gzip, Make, Pkg-config,

Sed, Texinfo, and Util-linux
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Linux From Scratch - Version 6.8

235

File
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Sed, and Zlib
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Findutils
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, Make, Sed, and Texinfo
Test suite depends on: DejaGNU, Diffutils, and Expect
Must be installed before: None
Optional dependencies: None

Flex
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, M4, Make, Patch, Sed, and

Texinfo
Test suite depends on: Bison and Gawk
Must be installed before: IPRoute2, Kbd, and Man-DB
Optional dependencies: None

Gawk
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, Make, Patch, Sed and, Texinfo
Test suite depends on: Diffutils
Must be installed before: None
Optional dependencies: None

Gcc
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Findutils, Gawk, GCC, Gettext, Glibc, GMP, Grep,

M4, Make, MPC, MPFR, Patch, Perl, Sed, Tar, and Texinfo
Test suite depends on: DejaGNU and Expect
Must be installed before: None
Optional dependencies: CLooG-PPL, GNAT and PPL

GDBM
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Grep, Make, and Sed
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Gettext
Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Glibc, Grep, Make, Sed, and Texinfo
Test suite depends on: Diffutils, Perl, and Tcl
Must be installed before: Automake
Optional dependencies: None

http://gcc.gnu.org/wiki/Graphite
http://gcc.gnu.org/wiki/GNAT
http://gcc.gnu.org/wiki/Graphite

Linux From Scratch - Version 6.8

236

Glibc
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Gettext, Grep, Gzip, Linux API

Headers, Make, Perl, Sed, and Texinfo

Test suite depends on: File

Must be installed before: None

Optional dependencies: None

GMP
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, M4, Make, Sed and

Texinfo

Test suite depends on: None

Must be installed before: MPFR, GCC

Optional dependencies: None

Grep
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Patch, Sed, and

Texinfo

Test suite depends on: Gawk

Must be installed before: Man-DB

Optional dependencies: Pcre, Xorg, and CUPS

Groff
Installation depends on: Bash, Binutils, Bison, Coreutils, Gawk, GCC, Glibc, Grep, Make, Patch, Sed, and

Texinfo

Test suite depends on: No test suite available

Must be installed before: Man-DB and Perl

Optional dependencies: GPL Ghostscript

GRUB
Installation depends on: Bash, Binutils, Bison, Coreutils, Diffutils, GCC, Gettext, Glibc, Grep, Make, Ncurses,

Sed, and Texinfo

Test suite depends on: None

Must be installed before: None

Optional dependencies: None

Gzip
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Grep, Make, Sed, and Texinfo

Test suite depends on: Diffutils

Must be installed before: Man-DB

Optional dependencies: None

Linux From Scratch - Version 6.8

237

Iana-Etc
Installation depends on: Coreutils, Gawk, and Make
Test suite depends on: No test suite available
Must be installed before: Perl
Optional dependencies: None

Inetutils
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Grep, Make, Ncurses, Patch, Sed, Texinfo, and

Zlib
Test suite depends on: No test suite available
Must be installed before: Tar
Optional dependencies: None

IProute2
Installation depends on: Bash, Bison, Coreutils, Flex, GCC, Glibc, Make, and Linux API Headers
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

Kbd
Installation depends on: Bash, Binutils, Bison, Coreutils, Flex, GCC, Gettext, Glibc, Gzip, Make, Patch, and Sed
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

Less
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Ncurses, and Sed
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: Pcre

Libtool
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Sed, and Texinfo
Test suite depends on: Findutils
Must be installed before: None
Optional dependencies: None

Linux Kernel
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Findutils, GCC, Glibc, Grep, Gzip, Make,

Module-Init-Tools, Ncurses, Perl, and Sed
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

Linux From Scratch - Version 6.8

238

M4
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Grep, Make, Sed, and Texinfo
Test suite depends on: Diffutils
Must be installed before: Autoconf and Bison
Optional dependencies: libsigsegv

Make
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, Make, Sed, and Texinfo
Test suite depends on: Perl and Procps
Must be installed before: None
Optional dependencies: None

Man-DB
Installation depends on: Bash, Binutils, Bzip2, Coreutils, Flex, GCC, GDBM, Gettext, Glibc, Grep, Groff, Gzip,

Less, Make, Sed, and Xz
Test suite depends on: Not run. Requires Man-DB test suite package
Must be installed before: None
Optional dependencies: None

Man-Pages
Installation depends on: Bash, Coreutils, and Make
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

Module-Init-Tools
Installation depends on: Bash, Binutils, Coreutils, Findutils, GCC, Glibc, Grep, Make, Patch, Sed, and Zlib
Test suite depends on: Diffutils, File, Gawk, and Gzip
Must be installed before: None
Optional dependencies: None

MPC
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, GMP, Make, MPFR, Sed

and Texinfo
Test suite depends on: None
Must be installed before: GCC
Optional dependencies: None

MPFR
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, GMP, Make, Sed and

Texinfo
Test suite depends on: None
Must be installed before: GCC
Optional dependencies: None

Linux From Scratch - Version 6.8

239

Ncurses
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, Patch, and Sed
Test suite depends on: No test suite available
Must be installed before: Bash, GRUB, Inetutils, Less, Procps, Psmisc, Readline, Texinfo, Util-linux, and Vim
Optional dependencies: None

Patch
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Grep, Make, and Sed
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: Ed

Perl
Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, GDBM, Glibc, Grep, Groff, Make, Sed, and

Zlib
Test suite depends on: Iana-Etc and Procps
Must be installed before: Autoconf
Optional dependencies: None

Pkg-config
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, and Sed
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Procps
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Make, and Ncurses
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

Psmisc
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, Make, Ncurses, and Sed
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

Readline
Installation depends on: Bash, Binutils, Coreutils, Gawk, GCC, Glibc, Grep, Make, Ncurses, Patch, Sed, and

Texinfo
Test suite depends on: No test suite available
Must be installed before: Bash
Optional dependencies: None

Linux From Scratch - Version 6.8

240

Sed
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, Make, Sed, and Texinfo
Test suite depends on: Diffutils and Gawk
Must be installed before: E2fsprogs, File, Libtool, and Shadow
Optional dependencies: Cracklib

Shadow
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Findutils, Gawk, GCC, Gettext, Glibc, Grep, Make,

and Sed
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

Sysklogd
Installation depends on: Binutils, Coreutils, GCC, Glibc, Make, and Patch
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

Sysvinit
Installation depends on: Binutils, Coreutils, GCC, Glibc, Make, and Sed
Test suite depends on: No test suite available
Must be installed before: None
Optional dependencies: None

Tar
Installation depends on: Bash, Binutils, Bison, Coreutils, GCC, Gettext, Glibc, Grep, Inetutils, Make, Sed, and

Texinfo
Test suite depends on: Autoconf, Diffutils, Findutils, Gawk, and Gzip
Must be installed before: None
Optional dependencies: None

Tcl
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, and Sed
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Texinfo
Installation depends on: Bash, Binutils, Coreutils, GCC, Gettext, Glibc, Grep, Make, Ncurses, Patch, and Sed
Test suite depends on: None
Must be installed before: None
Optional dependencies: None

Linux From Scratch - Version 6.8

241

Udev
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Gawk, GCC, Glibc, Grep, Make, and Sed

Test suite depends on: No test suite available

Must be installed before: None

Optional dependencies: None

Util-linux
Installation depends on: Bash, Binutils, Coreutils, Diffutils, Findutils, Gawk, GCC, Gettext, Glibc, Grep, Make,

Ncurses, Sed, and Zlib

Test suite depends on: No test suite available

Must be installed before: None

Optional dependencies: None

Vim
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, Grep, Make, Ncurses, and Sed

Test suite depends on: None

Must be installed before: None

Optional dependencies: Xorg, GTK+2, LessTif, Python, Tcl, Ruby, and GPM

Xz
Installation depends on: Bash, Binutils, Coreutils, Diffutils, GCC, Glibc, and Make.

Test suite depends on: None

Must be installed before: Man-DB

Optional dependencies: None

Zlib
Installation depends on: Bash, Binutils, Coreutils, GCC, Glibc, Make, and Sed

Test suite depends on: None

Must be installed before: File, Module-Init-Tools, Perl, and Util-linux

Optional dependencies: None

Linux From Scratch - Version 6.8

242

Appendix D. Boot and sysconfig scripts
version-20100627

The scripts in this appendix are listed by the directory where they normally reside. The
order is / etc/ rc. d/ init. d, / etc/ sysconfig, / etc/ sysconfig/ network- devices, and
/ etc/ sysconfig/ network- devices/ services. Within each section, the files are listed in the order they
are normally called.

D.1. /etc/rc.d/init.d/rc
The rc script is the first script called by init and initiates the boot process.

#!/bin/sh
##
Begin $rc_base/init.d/rc
#
Description : Main Run Level Control Script
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
#
Version : 00.00
#
Notes :
#
##

. /etc/sysconfig/rc

. ${rc_functions}

This sets a few default terminal options.
stty sane

These 3 signals will not cause our script to exit
trap "" INT QUIT TSTP

["${1}" != ""] && runlevel=${1}

if ["${runlevel}" = ""]; then
 echo "Usage: ${0} <runlevel>" >&2
 exit 1
fi

previous=${PREVLEVEL}
["${previous}" = ""] && previous=N

if [! -d ${rc_base}/rc${runlevel}.d]; then
 boot_mesg "${rc_base}/rc${runlevel}.d does not exist." ${WARNING}
 boot_mesg_flush
 exit 1
fi

Attempt to stop all service started by previous runlevel,
and killed in this runlevel

Linux From Scratch - Version 6.8

243

if ["${previous}" != "N"]; then
 for i in $(ls -v ${rc_base}/rc${runlevel}.d/K* 2> /dev/null)
 do
 check_script_status

 suffix=${i#$rc_base/rc$runlevel.d/K[0-9][0-9]}
 prev_start=rc_base/rcprevious.d/S[0-9][0-9]$suffix
 sysinit_start=$rc_base/rcsysinit.d/S[0-9][0-9]$suffix

 if ["${runlevel}" != "0"] && ["${runlevel}" != "6"]; then
 if [! -f ${prev_start}] && [! -f ${sysinit_start}]; then
 boot_mesg -n "WARNING:\n\n${i} can't be" ${WARNING}
 boot_mesg -n " executed because it was not"
 boot_mesg -n " not started in the previous"
 boot_mesg -n " runlevel (${previous})."
 boot_mesg "" ${NORMAL}
 boot_mesg_flush
 continue
 fi
 fi
 ${i} stop
 error_value=${?}

 if ["${error_value}" != "0"]; then
 print_error_msg
 fi
 done
fi

#Start all functions in this runlevel
for i in $(ls -v ${rc_base}/rc${runlevel}.d/S* 2> /dev/null)
do
 if ["${previous}" != "N"]; then
 suffix=${i#$rc_base/rc$runlevel.d/S[0-9][0-9]}
 stop=rc_base/rcrunlevel.d/K[0-9][0-9]$suffix
 prev_start=rc_base/rcprevious.d/S[0-9][0-9]$suffix

 [-f ${prev_start}] && [! -f ${stop}] && continue
 fi

 check_script_status

 case ${runlevel} in
 0|6)
 ${i} stop
 ;;
 *)
 ${i} start
 ;;
 esac
 error_value=${?}

 if ["${error_value}" != "0"]; then
 print_error_msg
 fi
done

Linux From Scratch - Version 6.8

244

End $rc_base/init.d/rc

D.2. /etc/rc.d/init.d/functions
#!/bin/sh
##
Begin $rc_base/init.d/functions
#
Description : Run Level Control Functions
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
#
Version : 00.00
#
Notes : With code based on Matthias Benkmann's simpleinit-msb
http://winterdrache.de/linux/newboot/index.html
#
##

Environmental setup
Setup default values for environment
umask 022
export PATH="/bin:/usr/bin:/sbin:/usr/sbin"

Signal sent to running processes to refresh their configuration
RELOADSIG="HUP"

Number of seconds between STOPSIG and FALLBACK when stopping processes
KILLDELAY="3"

Screen Dimensions
Find current screen size
if [-z "${COLUMNS}"]; then
 COLUMNS=$(stty size)
 COLUMNS=${COLUMNS##* }
fi

When using remote connections, such as a serial port, stty size returns 0
if ["${COLUMNS}" = "0"]; then
 COLUMNS=80
fi

Measurements for positioning result messages
COL=$((${COLUMNS} - 8))
WCOL=$((${COL} - 2))

Provide an echo that supports -e and -n
If formatting is needed, $ECHO should be used
case "`echo -e -n test`" in
 -[en]*)
 ECHO=/bin/echo
 ;;
 *)
 ECHO=echo
 ;;
esac

Linux From Scratch - Version 6.8

245

Set Cursor Position Commands, used via $ECHO
SET_COL="\\033[${COL}G" # at the $COL char
SET_WCOL="\\033[${WCOL}G" # at the $WCOL char
CURS_UP="\\033[1A\\033[0G" # Up one line, at the 0'th char

Set color commands, used via $ECHO
Please consult `man console_codes for more information
under the "ECMA-48 Set Graphics Rendition" section
#
Warning: when switching from a 8bit to a 9bit font,
the linux console will reinterpret the bold (1;) to
the top 256 glyphs of the 9bit font. This does
not affect framebuffer consoles
NORMAL="\\033[0;39m" # Standard console grey
SUCCESS="\\033[1;32m" # Success is green
WARNING="\\033[1;33m" # Warnings are yellow
FAILURE="\\033[1;31m" # Failures are red
INFO="\\033[1;36m" # Information is light cyan
BRACKET="\\033[1;34m" # Brackets are blue

STRING_LENGTH="0" # the length of the current message

#***
Function - boot_mesg()
#
Purpose: Sending information from bootup scripts to the console
#
Inputs: $1 is the message
$2 is the colorcode for the console
#
Outputs: Standard Output
#
Dependencies: - sed for parsing strings.
- grep for counting string length.

Todo:
#***
boot_mesg()
{
 local ECHOPARM=""

 while true
 do
 case "${1}" in
 -n)
 ECHOPARM=" -n "
 shift 1
 ;;
 -*)
 echo "Unknown Option: ${1}"
 return 1
 ;;
 *)
 break
 ;;
 esac

Linux From Scratch - Version 6.8

246

 done

 ## Figure out the length of what is to be printed to be used
 ## for warning messages.
 STRING_LENGTH=$((${#1} + 1))

 # Print the message to the screen
 ${ECHO} ${ECHOPARM} -e "${2}${1}"

}

boot_mesg_flush()
{
 # Reset STRING_LENGTH for next message
 STRING_LENGTH="0"
}

boot_log()
{
 # Left in for backwards compatibility
 :
}

echo_ok()
{
 ${ECHO} -n -e "${CURS_UP}${SET_COL}${BRACKET}[${SUCCESS} OK ${BRACKET}]"
 ${ECHO} -e "${NORMAL}"
 boot_mesg_flush
}

echo_failure()
{
 ${ECHO} -n -e "${CURS_UP}${SET_COL}${BRACKET}[${FAILURE} FAIL ${BRACKET}]"
 ${ECHO} -e "${NORMAL}"
 boot_mesg_flush
}

echo_warning()
{
 ${ECHO} -n -e "${CURS_UP}${SET_COL}${BRACKET}[${WARNING} WARN ${BRACKET}]"
 ${ECHO} -e "${NORMAL}"
 boot_mesg_flush
}

print_error_msg()
{
 echo_failure
 # $i is inherited by the rc script
 boot_mesg -n "FAILURE:\n\nYou should not be reading this error message.\n\n" ${FAILURE}
 boot_mesg -n " It means that an unforeseen error took"
 boot_mesg -n " place in ${i}, which exited with a return value of"
 boot_mesg " ${error_value}.\n"
 boot_mesg_flush
 boot_mesg -n "If you're able to track this"
 boot_mesg -n " error down to a bug in one of the files provided by"
 boot_mesg -n " the LFS book, please be so kind to inform us at"
 boot_mesg " lfs-dev@linuxfromscratch.org.\n"

Linux From Scratch - Version 6.8

247

 boot_mesg_flush
 boot_mesg -n "Press Enter to continue..." ${INFO}
 boot_mesg "" ${NORMAL}
 read ENTER
}

check_script_status()
{
 # $i is inherited by the rc script
 if [! -f ${i}]; then
 boot_mesg "${i} is not a valid symlink." ${WARNING}
 echo_warning
 continue
 fi

 if [! -x ${i}]; then
 boot_mesg "${i} is not executable, skipping." ${WARNING}
 echo_warning
 continue
 fi
}

evaluate_retval()
{
 error_value="${?}"

 if [${error_value} = 0]; then
 echo_ok
 else
 echo_failure
 fi

 # This prevents the 'An Unexpected Error Has Occurred' from trivial
 # errors.
 return 0
}

print_status()
{
 if ["${#}" = "0"]; then
 echo "Usage: ${0} {success|warning|failure}"
 return 1
 fi

 case "${1}" in

 success)
 echo_ok
 ;;

 warning)
 # Leave this extra case in because old scripts
 # may call it this way.
 case "${2}" in
 running)
 ${ECHO} -e -n "${CURS_UP}"
 ${ECHO} -e -n "\\033[${STRING_LENGTH}G "

Linux From Scratch - Version 6.8

248

 boot_mesg "Already running." ${WARNING}
 echo_warning
 ;;
 not_running)
 ${ECHO} -e -n "${CURS_UP}"
 ${ECHO} -e -n "\\033[${STRING_LENGTH}G "
 boot_mesg "Not running." ${WARNING}
 echo_warning
 ;;
 not_available)
 ${ECHO} -e -n "${CURS_UP}"
 ${ECHO} -e -n "\\033[${STRING_LENGTH}G "
 boot_mesg "Not available." ${WARNING}
 echo_warning
 ;;
 *)
 # This is how it is supposed to
 # be called
 echo_warning
 ;;
 esac
 ;;

 failure)
 echo_failure
 ;;

 esac

}

reloadproc()
{
 local pidfile=""
 local failure=0

 while true
 do
 case "${1}" in
 -p)
 pidfile="${2}"
 shift 2
 ;;
 -*)
 log_failure_msg "Unknown Option: ${1}"
 return 2
 ;;
 *)
 break
 ;;
 esac
 done

 if ["${#}" -lt "1"]; then
 log_failure_msg "Usage: reloadproc [-p pidfile] pathname"
 return 2
 fi

Linux From Scratch - Version 6.8

249

 # This will ensure compatibility with previous LFS Bootscripts
 if [-n "${PIDFILE}"]; then
 pidfile="${PIDFILE}"
 fi

 # Is the process running?
 if [-z "${pidfile}"]; then
 pidofproc -s "${1}"
 else
 pidofproc -s -p "${pidfile}" "${1}"
 fi

 # Warn about stale pid file
 if ["$?" = 1]; then
 boot_mesg -n "Removing stale pid file: ${pidfile}. " ${WARNING}
 rm -f "${pidfile}"
 fi

 if [-n "${pidlist}"]; then
 for pid in ${pidlist}
 do
 kill -"${RELOADSIG}" "${pid}" || failure="1"
 done

 (exit ${failure})
 evaluate_retval

 else
 boot_mesg "Process ${1} not running." ${WARNING}
 echo_warning
 fi
}

statusproc()
{
 local pidfile=""
 local base=""
 local ret=""

 while true
 do
 case "${1}" in
 -p)
 pidfile="${2}"
 shift 2
 ;;
 -*)
 log_failure_msg "Unknown Option: ${1}"
 return 2
 ;;
 *)
 break
 ;;
 esac
 done

Linux From Scratch - Version 6.8

250

 if ["${#}" != "1"]; then
 shift 1
 log_failure_msg "Usage: statusproc [-p pidfile] pathname"
 return 2
 fi

 # Get the process basename
 base="${1##*/}"

 # This will ensure compatibility with previous LFS Bootscripts
 if [-n "${PIDFILE}"]; then
 pidfile="${PIDFILE}"
 fi

 # Is the process running?
 if [-z "${pidfile}"]; then
 pidofproc -s "${1}"
 else
 pidofproc -s -p "${pidfile}" "${1}"
 fi

 # Store the return status
 ret=$?

 if [-n "${pidlist}"]; then
 ${ECHO} -e "${INFO}${base} is running with Process"\
 "ID(s) ${pidlist}.${NORMAL}"
 else
 if [-n "${base}" -a -e "/var/run/${base}.pid"]; then
 ${ECHO} -e "${WARNING}${1} is not running but"\
 "/var/run/${base}.pid exists.${NORMAL}"
 else
 if [-n "${pidfile}" -a -e "${pidfile}"]; then
 ${ECHO} -e "${WARNING}${1} is not running"\
 "but ${pidfile} exists.${NORMAL}"
 else
 ${ECHO} -e "${INFO}${1} is not running.${NORMAL}"
 fi
 fi
 fi

 # Return the status from pidofproc
 return $ret
}

The below functions are documented in the LSB-generic 2.1.0

#***
Function - pidofproc [-s] [-p pidfile] pathname
#
Purpose: This function returns one or more pid(s) for a particular daemon
#
Inputs: -p pidfile, use the specified pidfile instead of pidof
pathname, path to the specified program
#
Outputs: return 0 - Success, pid's in stdout
return 1 - Program is dead, pidfile exists

Linux From Scratch - Version 6.8

251

return 2 - Invalid or excessive number of arguments,
warning in stdout
return 3 - Program is not running
#
Dependencies: pidof, echo, head
#
Todo: Remove dependency on head
This replaces getpids
Test changes to pidof
#
#***
pidofproc()
{
 local pidfile=""
 local lpids=""
 local silent=""
 pidlist=""
 while true
 do
 case "${1}" in
 -p)
 pidfile="${2}"
 shift 2
 ;;

 -s)
 # Added for legacy opperation of getpids
 # eliminates several '> /dev/null'
 silent="1"
 shift 1
 ;;
 -*)
 log_failure_msg "Unknown Option: ${1}"
 return 2
 ;;
 *)
 break
 ;;
 esac
 done

 if ["${#}" != "1"]; then
 shift 1
 log_failure_msg "Usage: pidofproc [-s] [-p pidfile] pathname"
 return 2
 fi

 if [-n "${pidfile}"]; then
 if [! -r "${pidfile}"]; then
 return 3 # Program is not running
 fi

 lpids=`head -n 1 ${pidfile}`
 for pid in ${lpids}
 do
 if ["${pid}" -ne "$$" -a "${pid}" -ne "${PPID}"]; then
 kill -0 "${pid}" 2>/dev/null &&

Linux From Scratch - Version 6.8

252

 pidlist="${pidlist} ${pid}"
 fi

 if ["${silent}" != "1"]; then
 echo "${pidlist}"
 fi

 test -z "${pidlist}" &&
 # Program is dead, pidfile exists
 return 1
 # else
 return 0
 done

 else
 pidlist=`pidof -o $$ -o $PPID -x "$1"`
 if ["${silent}" != "1"]; then
 echo "${pidlist}"
 fi

 # Get provide correct running status
 if [-n "${pidlist}"]; then
 return 0
 else
 return 3
 fi

 fi

 if ["$?" != "0"]; then
 return 3 # Program is not running
 fi
}

#***
Function - loadproc [-f] [-n nicelevel] [-p pidfile] pathname [args]
#
Purpose: This runs the specified program as a daemon
#
Inputs: -f, run the program even if it is already running
-n nicelevel, specifies a nice level. See nice(1).
-p pidfile, uses the specified pidfile
pathname, pathname to the specified program
args, arguments to pass to specified program
#
Outputs: return 0 - Success
return 2 - Invalid of excessive number of arguments,
warning in stdout
return 4 - Program or service status is unknown
#
Dependencies: nice, rm
#
Todo: LSB says this should be called start_daemon
LSB does not say that it should call evaluate_retval
It checks for PIDFILE, which is deprecated.
Will be removed after BLFS 6.0
loadproc returns 0 if program is already running, not LSB compliant

Linux From Scratch - Version 6.8

253

#
#***
loadproc()
{
 local pidfile=""
 local forcestart=""
 local nicelevel="10"

This will ensure compatibility with previous LFS Bootscripts
 if [-n "${PIDFILE}"]; then
 pidfile="${PIDFILE}"
 fi

 while true
 do
 case "${1}" in
 -f)
 forcestart="1"
 shift 1
 ;;
 -n)
 nicelevel="${2}"
 shift 2
 ;;
 -p)
 pidfile="${2}"
 shift 2
 ;;
 -*)
 log_failure_msg "Unknown Option: ${1}"
 return 2 #invalid or excess argument(s)
 ;;
 *)
 break
 ;;
 esac
 done

 if ["${#}" = "0"]; then
 log_failure_msg "Usage: loadproc [-f] [-n nicelevel] [-p pidfile] pathname [args]"
 return 2 #invalid or excess argument(s)
 fi

 if [-z "${forcestart}"]; then
 if [-z "${pidfile}"]; then
 pidofproc -s "${1}"
 else
 pidofproc -s -p "${pidfile}" "${1}"
 fi

 case "${?}" in
 0)
 log_warning_msg "Unable to continue: ${1} is running"
 return 0 # 4
 ;;
 1)
 boot_mesg "Removing stale pid file: ${pidfile}" ${WARNING}

Linux From Scratch - Version 6.8

254

 rm -f "${pidfile}"
 ;;
 3)
 ;;
 *)
 log_failure_msg "Unknown error code from pidofproc: ${?}"
 return 4
 ;;
 esac
 fi

 nice -n "${nicelevel}" "${@}"
 evaluate_retval # This is "Probably" not LSB compliant,
but required to be compatible with older bootscripts
 return 0
}

#***
Function - killproc [-p pidfile] pathname [signal]
#
Purpose:
#
Inputs: -p pidfile, uses the specified pidfile
pathname, pathname to the specified program
signal, send this signal to pathname
#
Outputs: return 0 - Success
return 2 - Invalid of excessive number of arguments,
warning in stdout
return 4 - Unknown Status
#
Dependencies: kill, rm
#
Todo: LSB does not say that it should call evaluate_retval
It checks for PIDFILE, which is deprecated.
Will be removed after BLFS 6.0
#
#***
killproc()
{
 local pidfile=""
 local killsig=TERM # default signal is SIGTERM
 pidlist=""

 # This will ensure compatibility with previous LFS Bootscripts
 if [-n "${PIDFILE}"]; then
 pidfile="${PIDFILE}"
 fi

 while true
 do
 case "${1}" in
 -p)
 pidfile="${2}"
 shift 2
 ;;
 -*)

Linux From Scratch - Version 6.8

255

 log_failure_msg "Unknown Option: ${1}"
 return 2
 ;;
 *)
 break
 ;;
 esac
 done

 if ["${#}" = "2"]; then
 killsig="${2}"
 elif ["${#}" != "1"]; then
 shift 2
 log_failure_msg "Usage: killproc [-p pidfile] pathname [signal]"
 return 2
 fi

 # Is the process running?
 if [-z "${pidfile}"]; then
 pidofproc -s "${1}"
 else
 pidofproc -s -p "${pidfile}" "${1}"
 fi

 # Remove stale pidfile
 if ["$?" = 1]; then
 boot_mesg "Removing stale pid file: ${pidfile}." ${WARNING}
 rm -f "${pidfile}"
 fi

 # If running, send the signal
 if [-n "${pidlist}"]; then
 for pid in ${pidlist}
 do
 kill -${killsig} ${pid} 2>/dev/null

 # Wait up to 3 seconds, for ${pid} to terminate
 case "${killsig}" in
 TERM|SIGTERM|KILL|SIGKILL)
 # sleep in 1/10ths of seconds and
 # multiply KILLDELAY by 10
 local dtime="${KILLDELAY}0"
 while ["${dtime}" != "0"]
 do
 kill -0 ${pid} 2>/dev/null || break
 sleep 0.1
 dtime=$((${dtime} - 1))
 done
 # If ${pid} is still running, kill it
 kill -0 ${pid} 2>/dev/null && kill -KILL ${pid} 2>/dev/null
 ;;
 esac
 done

 # Check if the process is still running if we tried to stop it
 case "${killsig}" in
 TERM|SIGTERM|KILL|SIGKILL)

Linux From Scratch - Version 6.8

256

 if [-z "${pidfile}"]; then
 pidofproc -s "${1}"
 else
 pidofproc -s -p "${pidfile}" "${1}"
 fi

 # Program was terminated
 if ["$?" != "0"]; then
 # Remove the pidfile if necessary
 if [-f "${pidfile}"]; then
 rm -f "${pidfile}"
 fi
 echo_ok
 return 0
 else # Program is still running
 echo_failure
 return 4 # Unknown Status
 fi
 ;;
 *)
 # Just see if the kill returned successfully
 evaluate_retval
 ;;
 esac
 else # process not running
 print_status warning not_running
 fi
}

#***
Function - log_success_msg "message"
#
Purpose: Print a success message
#
Inputs: $@ - Message
#
Outputs: Text output to screen
#
Dependencies: echo
#
Todo: logging
#
#***
log_success_msg()
{
 ${ECHO} -n -e "${BOOTMESG_PREFIX}${@}"
 ${ECHO} -e "${SET_COL}""${BRACKET}""[""${SUCCESS}"" OK ""${BRACKET}""]""${NORMAL}"
 return 0
}

#***
Function - log_failure_msg "message"
#
Purpose: Print a failure message
#
Inputs: $@ - Message

Linux From Scratch - Version 6.8

257

#
Outputs: Text output to screen
#
Dependencies: echo
#
Todo: logging
#
#***
log_failure_msg() {
 ${ECHO} -n -e "${BOOTMESG_PREFIX}${@}"
 ${ECHO} -e "${SET_COL}""${BRACKET}""[""${FAILURE}"" FAIL ""${BRACKET}""]""${NORMAL}"
 return 0
}

#***
Function - log_warning_msg "message"
#
Purpose: print a warning message
#
Inputs: $@ - Message
#
Outputs: Text output to screen
#
Dependencies: echo
#
Todo: logging
#
#***
log_warning_msg() {
 ${ECHO} -n -e "${BOOTMESG_PREFIX}${@}"
 ${ECHO} -e "${SET_COL}""${BRACKET}""[""${WARNING}"" WARN ""${BRACKET}""]""${NORMAL}"
 return 0
}

End $rc_base/init.d/functions

D.3. /etc/rc.d/init.d/mountkernfs
#!/bin/sh
##
Begin $rc_base/init.d/mountkernfs
#
Description : Mount proc and sysfs
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
#
Version : 00.00
#
Notes :
#
##

. /etc/sysconfig/rc

. ${rc_functions}

case "${1}" in

Linux From Scratch - Version 6.8

258

 start)
 boot_mesg -n "Mounting kernel-based file systems:" ${INFO}

 if ! mountpoint /proc >/dev/null; then
 boot_mesg -n " /proc" ${NORMAL}
 mount -n /proc || failed=1
 fi

 if ! mountpoint /sys >/dev/null; then
 boot_mesg -n " /sys" ${NORMAL}
 mount -n /sys || failed=1
 fi

 boot_mesg "" ${NORMAL}

 (exit ${failed})
 evaluate_retval
 ;;

 *)
 echo "Usage: ${0} {start}"
 exit 1
 ;;
esac

End $rc_base/init.d/mountkernfs

D.4. /etc/rc.d/init.d/consolelog
#!/bin/sh
Begin $rc_base/init.d/consolelog

##
#
Description : Set the kernel log level for the console
#
Authors : Dan Nicholson - dnicholson@linuxfromscratch.org
#
Version : 00.00
#
Notes : /proc must be mounted before this can run
#
##

. /etc/sysconfig/rc

. ${rc_functions}

set the default loglevel
LOGLEVEL=7
if [-r /etc/sysconfig/console]; then
 . /etc/sysconfig/console
fi

case "${1}" in
 start)
 case "$LOGLEVEL" in

Linux From Scratch - Version 6.8

259

 [1-8])
 boot_mesg "Setting the console log level to ${LOGLEVEL}..."
 dmesg -n $LOGLEVEL
 evaluate_retval
 ;;
 *)
 boot_mesg "Console log level '${LOGLEVEL}' is invalid" ${FAILURE}
 echo_failure
 ;;
 esac
 ;;
 status)
 # Read the current value if possible
 if [-r /proc/sys/kernel/printk]; then
 read level line < /proc/sys/kernel/printk
 else
 boot_mesg "Can't read the current console log level" ${FAILURE}
 echo_failure
 fi

 # Print the value
 if [-n "$level"]; then
 ${ECHO} -e "${INFO}The current console log level" \
 "is ${level}${NORMAL}"
 fi
 ;;

 *)
 echo "Usage: ${0} {start|status}"
 exit 1
 ;;
esac

End $rc_base/init.d/consolelog

D.5. /etc/rc.d/init.d/modules
#!/bin/sh
##
Begin $rc_base/init.d/modules
#
Description : Module auto-loading script
#
Authors : Zack Winkles
#
Version : 00.00
#
Notes :
#
##

. /etc/sysconfig/rc

. ${rc_functions}

Assure that the kernel has module support.
[-e /proc/ksyms -o -e /proc/modules] || exit 0

Linux From Scratch - Version 6.8

260

case "${1}" in
 start)

 # Exit if there's no modules file or there are no
 # valid entries
 [-r /etc/sysconfig/modules] &&
 egrep -qv '^($|#)' /etc/sysconfig/modules ||
 exit 0

 boot_mesg -n "Loading modules:" ${INFO}

 # Only try to load modules if the user has actually given us
 # some modules to load.
 while read module args; do

 # Ignore comments and blank lines.
 case "$module" in
 ""|"#"*) continue ;;
 esac

 # Attempt to load the module, making
 # sure to pass any arguments provided.
 modprobe ${module} ${args} >/dev/null

 # Print the module name if successful,
 # otherwise take note.
 if [$? -eq 0]; then
 boot_mesg -n " ${module}" ${NORMAL}
 else
 failedmod="${failedmod} ${module}"
 fi
 done < /etc/sysconfig/modules

 boot_mesg "" ${NORMAL}
 # Print a message about successfully loaded
 # modules on the correct line.
 echo_ok

 # Print a failure message with a list of any
 # modules that may have failed to load.
 if [-n "${failedmod}"]; then
 boot_mesg "Failed to load modules:${failedmod}" ${FAILURE}
 echo_failure
 fi
 ;;
 *)
 echo "Usage: ${0} {start}"
 exit 1
 ;;
esac

End $rc_base/init.d/modules

Linux From Scratch - Version 6.8

261

D.6. /etc/rc.d/init.d/udev
#!/bin/sh
##
Begin $rc_base/init.d/udev
#
Description : Udev cold-plugging script
#
Authors : Zack Winkles, Alexander E. Patrakov
#
Version : 00.02
#
Notes :
#
##

. /etc/sysconfig/rc

. ${rc_functions}

case "${1}" in
 start)
 boot_mesg "Populating /dev with device nodes..."
 if ! grep -q '[[:space:]]sysfs' /proc/mounts; then
 echo_failure
 boot_mesg -n "FAILURE:\n\nUnable to create" ${FAILURE}
 boot_mesg -n " devices without a SysFS filesystem"
 boot_mesg -n "\n\nAfter you press Enter, this system"
 boot_mesg -n " will be halted and powered off."
 boot_mesg -n "\n\nPress Enter to continue..." ${INFO}
 boot_mesg "" ${NORMAL}
 read ENTER
 /etc/rc.d/init.d/halt stop
 fi

 # Mount a temporary file system over /dev, so that any devices
 # made or removed during this boot don't affect the next one.
 # The reason we don't write to mtab is because we don't ever
 # want /dev to be unavailable (such as by `umount -a').
 if ! mountpoint /dev > /dev/null; then
 mount -n -t tmpfs tmpfs /dev -o mode=755
 fi
 if [${?} != 0]; then
 echo_failure
 boot_mesg -n "FAILURE:\n\nCannot mount a tmpfs" ${FAILURE}
 boot_mesg -n " onto /dev, this system will be halted."
 boot_mesg -n "\n\nAfter you press Enter, this system"
 boot_mesg -n " will be halted and powered off."
 boot_mesg -n "\n\nPress Enter to continue..." ${INFO}
 boot_mesg "" ${NORMAL}
 read ENTER
 /etc/rc.d/init.d/halt stop
 fi

 # Udev handles uevents itself, so we don't need to have
 # the kernel call out to any binary in response to them
 echo > /proc/sys/kernel/hotplug

Linux From Scratch - Version 6.8

262

 # Copy the only static device node that Udev >= 155 doesn't
 # handle to /dev
 cp -a /lib/udev/devices/null /dev

 # Start the udev daemon to continually watch for, and act on,
 # uevents
 /sbin/udevd --daemon

 # Now traverse /sys in order to "coldplug" devices that have
 # already been discovered
 /sbin/udevadm trigger --action=add

 # Now wait for udevd to process the uevents we triggered
 /sbin/udevadm settle
 evaluate_retval

 ;;

 *)
 echo "Usage ${0} {start}"
 exit 1
 ;;
esac

End $rc_base/init.d/udev

D.7. /etc/rc.d/init.d/swap
#!/bin/sh
##
Begin $rc_base/init.d/swap
#
Description : Swap Control Script
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
#
Version : 00.00
#
Notes :
#
##

. /etc/sysconfig/rc

. ${rc_functions}

case "${1}" in
 start)
 boot_mesg "Activating all swap files/partitions..."
 swapon -a
 evaluate_retval
 ;;

 stop)
 boot_mesg "Deactivating all swap files/partitions..."
 swapoff -a

Linux From Scratch - Version 6.8

263

 evaluate_retval
 ;;

 restart)
 ${0} stop
 sleep 1
 ${0} start
 ;;

 status)
 boot_mesg "Retrieving swap status." ${INFO}
 echo_ok
 echo
 swapon -s
 ;;

 *)
 echo "Usage: ${0} {start|stop|restart|status}"
 exit 1
 ;;
esac

End $rc_base/init.d/swap

D.8. /etc/rc.d/init.d/setclock
#!/bin/sh
##
Begin $rc_base/init.d/setclock
#
Description : Setting Linux Clock
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
#
Version : 00.00
#
Notes :
#
##

. /etc/sysconfig/rc

. ${rc_functions}

. /etc/sysconfig/clock

case "${UTC}" in
 yes|true|1)
 CLOCKPARAMS="${CLOCKPARAMS} --utc"
 ;;

 no|false|0)
 CLOCKPARAMS="${CLOCKPARAMS} --localtime"
 ;;

esac

case ${1} in

Linux From Scratch - Version 6.8

264

 start)
 boot_mesg "Setting system clock..."
 hwclock --hctosys ${CLOCKPARAMS} >/dev/null
 evaluate_retval
 ;;

 stop)
 boot_mesg "Setting hardware clock..."
 hwclock --systohc ${CLOCKPARAMS} >/dev/null
 evaluate_retval
 ;;

 *)
 echo "Usage: ${0} {start|stop}"
 ;;

esac

D.9. /etc/rc.d/init.d/checkfs
#!/bin/sh
##
Begin $rc_base/init.d/checkfs
#
Description : File System Check
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
A. Luebke - luebke@users.sourceforge.net
#
Version : 00.00
#
Notes :
#
Based on checkfs script from LFS-3.1 and earlier.
#
From man fsck
0 - No errors
1 - File system errors corrected
2 - System should be rebooted
4 - File system errors left uncorrected
8 - Operational error
16 - Usage or syntax error
32 - Fsck canceled by user request
128 - Shared library error
#
###

. /etc/sysconfig/rc

. ${rc_functions}

case "${1}" in
 start)
 if [-f /fastboot]; then
 boot_mesg -n "/fastboot found, will not perform" ${INFO}
 boot_mesg " file system checks as requested."
 echo_ok

Linux From Scratch - Version 6.8

265

 exit 0
 fi

 boot_mesg "Mounting root file system in read-only mode..."
 mount -n -o remount,ro / >/dev/null
 evaluate_retval

 if [${?} != 0]; then
 echo_failure
 boot_mesg -n "FAILURE:\n\nCannot check root" ${FAILURE}
 boot_mesg -n " filesystem because it could not be mounted"
 boot_mesg -n " in read-only mode.\n\nAfter you"
 boot_mesg -n " press Enter, this system will be"
 boot_mesg -n " halted and powered off."
 boot_mesg -n "\n\nPress enter to continue..." ${INFO}
 boot_mesg "" ${NORMAL}
 read ENTER
 ${rc_base}/init.d/halt stop
 fi

 if [-f /forcefsck]; then
 boot_mesg -n "/forcefsck found, forcing file" ${INFO}
 boot_mesg " system checks as requested."
 echo_ok
 options="-f"
 else
 options=""
 fi

 boot_mesg "Checking file systems..."
 # Note: -a option used to be -p; but this fails e.g.
 # on fsck.minix
 fsck ${options} -a -A -C -T
 error_value=${?}

 if ["${error_value}" = 0]; then
 echo_ok
 fi

 if ["${error_value}" = 1]; then
 echo_warning
 boot_mesg -n "WARNING:\n\nFile system errors" ${WARNING}
 boot_mesg -n " were found and have been corrected."
 boot_mesg -n " You may want to double-check that"
 boot_mesg -n " everything was fixed properly."
 boot_mesg "" ${NORMAL}
 fi

 if ["${error_value}" = 2 -o "${error_value}" = 3]; then
 echo_warning
 boot_mesg -n "WARNING:\n\nFile system errors" ${WARNING}
 boot_mesg -n " were found and have been been"
 boot_mesg -n " corrected, but the nature of the"
 boot_mesg -n " errors require this system to be"
 boot_mesg -n " rebooted.\n\nAfter you press enter,"
 boot_mesg -n " this system will be rebooted"
 boot_mesg -n "\n\nPress Enter to continue..." ${INFO}

Linux From Scratch - Version 6.8

266

 boot_mesg "" ${NORMAL}
 read ENTER
 reboot -f
 fi

 if ["${error_value}" -gt 3 -a "${error_value}" -lt 16]; then
 echo_failure
 boot_mesg -n "FAILURE:\n\nFile system errors" ${FAILURE}
 boot_mesg -n " were encountered that could not be"
 boot_mesg -n " fixed automatically. This system"
 boot_mesg -n " cannot continue to boot and will"
 boot_mesg -n " therefore be halted until those"
 boot_mesg -n " errors are fixed manually by a"
 boot_mesg -n " System Administrator.\n\nAfter you"
 boot_mesg -n " press Enter, this system will be"
 boot_mesg -n " halted and powered off."
 boot_mesg -n "\n\nPress Enter to continue..." ${INFO}
 boot_mesg "" ${NORMAL}
 read ENTER
 ${rc_base}/init.d/halt stop
 fi

 if ["${error_value}" -ge 16]; then
 echo_failure
 boot_mesg -n "FAILURE:\n\nUnexpected Failure" ${FAILURE}
 boot_mesg -n " running fsck. Exited with error"
 boot_mesg -n " code: ${error_value}."
 boot_mesg "" ${NORMAL}
 exit ${error_value}
 fi
 ;;
 *)
 echo "Usage: ${0} {start}"
 exit 1
 ;;
esac

End $rc_base/init.d/checkfs

D.10. /etc/rc.d/init.d/mountfs
#!/bin/sh
##
Begin $rc_base/init.d/mountfs
#
Description : File System Mount Script
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
#
Version : 00.00
#
Notes :
#
##

. /etc/sysconfig/rc

Linux From Scratch - Version 6.8

267

. ${rc_functions}

case "${1}" in
 start)
 boot_mesg "Remounting root file system in read-write mode..."
 mount -n -o remount,rw / >/dev/null
 evaluate_retval

 # Remove fsck-related file system watermarks.
 rm -f /fastboot /forcefsck

 boot_mesg "Recording existing mounts in /etc/mtab..."
 > /etc/mtab
 mount -f / || failed=1
 mount -f /proc || failed=1
 mount -f /sys || failed=1
 (exit ${failed})
 evaluate_retval

 # This will mount all filesystems that do not have _netdev in
 # their option list. _netdev denotes a network filesystem.
 boot_mesg "Mounting remaining file systems..."
 mount -a -O no_netdev >/dev/null
 evaluate_retval
 ;;

 stop)
 boot_mesg "Unmounting all other currently mounted file systems..."
 umount -a -d -r >/dev/null
 evaluate_retval
 ;;

 *)
 echo "Usage: ${0} {start|stop}"
 exit 1
 ;;
esac

End $rc_base/init.d/mountfs

D.11. /etc/rc.d/init.d/udev_retry
#!/bin/sh
##
Begin $rc_base/init.d/udev_retry
#
Description : Udev cold-plugging script (retry)
#
Authors : Alexander E. Patrakov
#
Version : 00.02
#
Notes :
#
##

Linux From Scratch - Version 6.8

268

. /etc/sysconfig/rc

. ${rc_functions}

case "${1}" in
 start)
 boot_mesg "Retrying failed uevents, if any..."

 # From Debian: "copy the rules generated before / was mounted
 # read-write":
 for file in /dev/.udev/tmp-rules--*; do
 dest=${file##*tmp-rules--}
 ["$dest" = '*'] && break
 cat $file >> /etc/udev/rules.d/$dest
 rm -f $file
 done

 # Re-trigger the failed uevents in hope they will succeed now
 /sbin/udevadm trigger --type=failed --action=add

 # Now wait for udevd to process the uevents we triggered
 /sbin/udevadm settle
 evaluate_retval
 ;;

 *)
 echo "Usage ${0} {start}"
 exit 1
 ;;
esac

End $rc_base/init.d/udev_retry

D.12. /etc/rc.d/init.d/cleanfs
#!/bin/sh
##
Begin $rc_base/init.d/cleanfs
#
Description : Clean file system
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
#
Version : 00.00
#
Notes :
#
##

. /etc/sysconfig/rc

. ${rc_functions}

Function to create files/directory on boot.
create_files() {
 # Read in the configuration file.
 exec 9>&0 < /etc/sysconfig/createfiles
 while read name type perm usr grp dtype maj min junk

Linux From Scratch - Version 6.8

269

 do

 # Ignore comments and blank lines.
 case "${name}" in
 ""|\#*) continue ;;
 esac

 # Ignore existing files.
 if [! -e "${name}"]; then
 # Create stuff based on its type.
 case "${type}" in
 dir)
 mkdir "${name}"
 ;;
 file)
 :> "${name}"
 ;;
 dev)
 case "${dtype}" in
 char)
 mknod "${name}" c ${maj} ${min}
 ;;
 block)
 mknod "${name}" b ${maj} ${min}
 ;;
 pipe)
 mknod "${name}" p
 ;;
 *)
 boot_mesg -n "\nUnknown device type: ${dtype}" ${WARNING}
 boot_mesg "" ${NORMAL}
 ;;
 esac
 ;;
 *)
 boot_mesg -n "\nUnknown type: ${type}" ${WARNING}
 boot_mesg "" ${NORMAL}
 continue
 ;;
 esac

 # Set up the permissions, too.
 chown ${usr}:${grp} "${name}"
 chmod ${perm} "${name}"
 fi
 done
 exec 0>&9 9>&-
}

case "${1}" in
 start)
 boot_mesg -n "Cleaning file systems:" ${INFO}

 boot_mesg -n " /tmp" ${NORMAL}
 cd /tmp &&
 find . -xdev -mindepth 1 ! -name lost+found \
 -delete || failed=1

Linux From Scratch - Version 6.8

270

 boot_mesg -n " /var/lock" ${NORMAL}
 cd /var/lock &&
 find . -type f -exec rm -f {} \; || failed=1

 boot_mesg " /var/run" ${NORMAL}
 cd /var/run &&
 find . ! -type d ! -name utmp \
 -exec rm -f {} \; || failed=1
 > /var/run/utmp
 if grep -q '^utmp:' /etc/group ; then
 chmod 664 /var/run/utmp
 chgrp utmp /var/run/utmp
 fi

 (exit ${failed})
 evaluate_retval

 if egrep -qv '^(#|$)' /etc/sysconfig/createfiles 2>/dev/null; then
 boot_mesg "Creating files and directories..."
 create_files
 evaluate_retval
 fi
 ;;
 *)
 echo "Usage: ${0} {start}"
 exit 1
 ;;
esac

End $rc_base/init.d/cleanfs

D.13. /etc/rc.d/init.d/console
#!/bin/sh
##
Begin $rc_base/init.d/console
#
Description : Sets keymap and screen font
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
Alexander E. Patrakov
#
Version : 00.03
#
Notes :
#
##

. /etc/sysconfig/rc

. ${rc_functions}

Native English speakers probably don't have /etc/sysconfig/console at all
if [-f /etc/sysconfig/console]
then
 . /etc/sysconfig/console

Linux From Scratch - Version 6.8

271

else
 exit 0
fi

is_true() {
 ["$1" = "1"] || ["$1" = "yes"] || ["$1" = "true"]
}

failed=0

case "${1}" in
 start)
 boot_mesg "Setting up Linux console..."
 # There should be no bogus failures below this line!

 # Figure out if a framebuffer console is used
 [-d /sys/class/graphics/fb0] && USE_FB=1 || USE_FB=0

 # Figure out the command to set the console into the
 # desired mode
 is_true "${UNICODE}" &&
 MODE_COMMAND="${ECHO} -en '\033%G' && kbd_mode -u" ||
 MODE_COMMAND="${ECHO} -en '\033%@\033(K' && kbd_mode -a"

 # On framebuffer consoles, font has to be set for each vt in
 # UTF-8 mode. This doesn't hurt in non-UTF-8 mode also.

 ! is_true "${USE_FB}" || [-z "${FONT}"] ||
 MODE_COMMAND="${MODE_COMMAND} && setfont ${FONT}"

 # Apply that command to all consoles mentioned in
 # /etc/inittab. Important: in the UTF-8 mode this should
 # happen before setfont, otherwise a kernel bug will
 # show up and the unicode map of the font will not be
 # used.
 # FIXME: Fedora Core also initializes two spare consoles
 # - do we want that?

 for TTY in `grep '^[^#].*respawn:/sbin/agetty' /etc/inittab |
 grep -o '\btty[[:digit:]]*\b'`
 do
 openvt -f -w -c ${TTY#tty} -- \
 /bin/sh -c "${MODE_COMMAND}" || failed=1
 done

 # Set the font (if not already set above) and the keymap
 is_true "${USE_FB}" || [-z "${FONT}"] ||
 setfont $FONT ||
 failed=1
 [-z "${KEYMAP}"] ||
 loadkeys ${KEYMAP} >/dev/null 2>&1 ||
 failed=1
 [-z "${KEYMAP_CORRECTIONS}"] ||
 loadkeys ${KEYMAP_CORRECTIONS} >/dev/null 2>&1 ||
 failed=1

 # Convert the keymap from $LEGACY_CHARSET to UTF-8

Linux From Scratch - Version 6.8

272

 [-z "$LEGACY_CHARSET"] ||
 dumpkeys -c "$LEGACY_CHARSET" |
 loadkeys -u >/dev/null 2>&1 ||
 failed=1

 # If any of the commands above failed, the trap at the
 # top would set $failed to 1
 (exit $failed)
 evaluate_retval
 ;;
 *)
 echo $"Usage:" "${0} {start}"
 exit 1
 ;;
esac

End $rc_base/init.d/console

D.14. /etc/rc.d/init.d/localnet
#!/bin/sh
##
Begin $rc_base/init.d/localnet
#
Description : Loopback device
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
#
Version : 00.00
#
Notes :
#
##

. /etc/sysconfig/rc

. ${rc_functions}

. /etc/sysconfig/network

case "${1}" in
 start)
 boot_mesg "Bringing up the loopback interface..."
 ip addr add 127.0.0.1/8 label lo dev lo
 ip link set lo up
 evaluate_retval

 boot_mesg "Setting hostname to ${HOSTNAME}..."
 hostname ${HOSTNAME}
 evaluate_retval
 ;;

 stop)
 boot_mesg "Bringing down the loopback interface..."
 ip link set lo down
 evaluate_retval
 ;;

Linux From Scratch - Version 6.8

273

 restart)
 ${0} stop
 sleep 1
 ${0} start
 ;;

 status)
 echo "Hostname is: $(hostname)"
 ip link show lo
 ;;

 *)
 echo "Usage: ${0} {start|stop|restart|status}"
 exit 1
 ;;
esac

End $rc_base/init.d/localnet

D.15. /etc/rc.d/init.d/sysctl
#!/bin/sh
##
Begin $rc_base/init.d/sysctl
#
Description : File uses /etc/sysctl.conf to set kernel runtime
parameters
#
Authors : Nathan Coulson (nathan@linuxfromscratch.org)
Matthew Burgress (matthew@linuxfromscratch.org)
#
Version : 00.00
#
Notes :
#
##

. /etc/sysconfig/rc

. ${rc_functions}

case "${1}" in
 start)
 if [-f "/etc/sysctl.conf"]; then
 boot_mesg "Setting kernel runtime parameters..."
 sysctl -q -p
 evaluate_retval
 fi
 ;;

 status)
 sysctl -a
 ;;

 *)
 echo "Usage: ${0} {start|status}"
 exit 1

Linux From Scratch - Version 6.8

274

 ;;
esac

End $rc_base/init.d/sysctl

D.16. /etc/rc.d/init.d/sysklogd
#!/bin/sh
##
Begin $rc_base/init.d/sysklogd
#
Description : Sysklogd loader
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
#
Version : 00.00
#
Notes :
#
##

. /etc/sysconfig/rc

. ${rc_functions}

case "${1}" in
 start)
 boot_mesg "Starting system log daemon..."
 loadproc syslogd -m 0

 boot_mesg "Starting kernel log daemon..."
 loadproc klogd
 ;;

 stop)
 boot_mesg "Stopping kernel log daemon..."
 killproc klogd

 boot_mesg "Stopping system log daemon..."
 killproc syslogd
 ;;

 reload)
 boot_mesg "Reloading system log daemon config file..."
 reloadproc syslogd
 ;;

 restart)
 ${0} stop
 sleep 1
 ${0} start
 ;;

 status)
 statusproc syslogd
 statusproc klogd
 ;;

Linux From Scratch - Version 6.8

275

 *)
 echo "Usage: ${0} {start|stop|reload|restart|status}"
 exit 1
 ;;
esac

End $rc_base/init.d/sysklogd

D.17. /etc/rc.d/init.d/network
#!/bin/sh
##
Begin $rc_base/init.d/network
#
Description : Network Control Script
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
Nathan Coulson - nathan@linuxfromscratch.org
Kevin P. Fleming - kpfleming@linuxfromscratch.org
#
Version : 00.00
#
Notes :
#
##

. /etc/sysconfig/rc

. ${rc_functions}

. /etc/sysconfig/network

case "${1}" in
 start)
 # Start all network interfaces
 for file in ${network_devices}/ifconfig.*
 do
 interface=${file##*/ifconfig.}

 # skip if $file is * (because nothing was found)
 if ["${interface}" = "*"]
 then
 continue
 fi

 IN_BOOT=1 ${network_devices}/ifup ${interface}
 done
 ;;

 stop)
 # Reverse list
 FILES=""
 for file in ${network_devices}/ifconfig.*
 do
 FILES="${file} ${FILES}"
 done

Linux From Scratch - Version 6.8

276

 # Stop all network interfaces
 for file in ${FILES}
 do
 interface=${file##*/ifconfig.}

 # skip if $file is * (because nothing was found)
 if ["${interface}" = "*"]
 then
 continue
 fi

 IN_BOOT=1 ${network_devices}/ifdown ${interface}
 done
 ;;

 restart)
 ${0} stop
 sleep 1
 ${0} start
 ;;

 *)
 echo "Usage: ${0} {start|stop|restart}"
 exit 1
 ;;
esac

End /etc/rc.d/init.d/network

D.18. /etc/rc.d/init.d/sendsignals
#!/bin/sh
##
Begin $rc_base/init.d/sendsignals
#
Description : Sendsignals Script
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
#
Version : 00.00
#
Notes :
#
##

. /etc/sysconfig/rc

. ${rc_functions}

case "${1}" in
 stop)
 boot_mesg "Sending all processes the TERM signal..."
 killall5 -15
 error_value=${?}

 sleep ${KILLDELAY}

Linux From Scratch - Version 6.8

277

 if ["${error_value}" = 0 -o "${error_value}" = 2]; then
 echo_ok
 else
 echo_failure
 fi

 boot_mesg "Sending all processes the KILL signal..."
 killall5 -9
 error_value=${?}

 sleep ${KILLDELAY}

 if ["${error_value}" = 0 -o "${error_value}" = 2]; then
 echo_ok
 else
 echo_failure
 fi
 ;;

 *)
 echo "Usage: ${0} {stop}"
 exit 1
 ;;

esac

End $rc_base/init.d/sendsignals

D.19. /etc/rc.d/init.d/reboot
#!/bin/sh
##
Begin $rc_base/init.d/reboot
#
Description : Reboot Scripts
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
#
Version : 00.00
#
Notes :
#
##

. /etc/sysconfig/rc

. ${rc_functions}

case "${1}" in
 stop)
 boot_mesg "Restarting system..."
 reboot -d -f -i
 ;;

 *)
 echo "Usage: ${0} {stop}"
 exit 1

Linux From Scratch - Version 6.8

278

 ;;

esac

End $rc_base/init.d/reboot

D.20. /etc/rc.d/init.d/halt
#!/bin/sh
##
Begin $rc_base/init.d/halt
#
Description : Halt Script
#
Authors : Gerard Beekmans - gerard@linuxfromscratch.org
#
Version : 00.00
#
Notes :
#
##

. /etc/sysconfig/rc

. ${rc_functions}

case "${1}" in
 stop)
 halt -d -f -i -p
 ;;
 *)
 echo "Usage: {stop}"
 exit 1
 ;;
esac

End $rc_base/init.d/halt

D.21. /etc/rc.d/init.d/template
#!/bin/sh
##
Begin $rc_base/init.d/
#
Description :
#
Authors :
#
Version : 00.00
#
Notes :
#
##

. /etc/sysconfig/rc

. ${rc_functions}

Linux From Scratch - Version 6.8

279

case "${1}" in
 start)
 boot_mesg "Starting..."
 loadproc
 ;;

 stop)
 boot_mesg "Stopping..."
 killproc
 ;;

 reload)
 boot_mesg "Reloading..."
 reloadproc
 ;;

 restart)
 ${0} stop
 sleep 1
 ${0} start
 ;;

 status)
 statusproc
 ;;

 *)
 echo "Usage: ${0} {start|stop|reload|restart|status}"
 exit 1
 ;;
esac

End $rc_base/init.d/

D.22. /etc/sysconfig/rc
##
Begin /etc/sysconfig/rc
#
Description : rc script configuration
#
Authors :
#
Version : 00.00
#
Notes :
#
##

rc_base=/etc/rc.d
rc_functions=${rc_base}/init.d/functions
network_devices=/etc/sysconfig/network-devices

End /etc/sysconfig/rc

Linux From Scratch - Version 6.8

280

D.23. /etc/sysconfig/modules
##
Begin /etc/sysconfig/modules
#
Description : Module auto-loading configuration
#
Authors :
#
Version : 00.00
#
Notes : The syntax of this file is as follows:
<module> [<arg1> <arg2> ...]
#
Each module should be on it's own line, and any options that you want
passed to the module should follow it. The line deliminator is either
a space or a tab.
##

End /etc/sysconfig/modules

D.24. /etc/sysconfig/createfiles
##
Begin /etc/sysconfig/createfiles
#
Description : Createfiles script config file
#
Authors :
#
Version : 00.00
#
Notes : The syntax of this file is as follows:
if type is equal to "file" or "dir"
<filename> <type> <permissions> <user> <group>
if type is equal to "dev"
<filename> <type> <permissions> <user> <group> <devtype> <major> <minor>
#
<filename> is the name of the file which is to be created
<type> is either file, dir, or dev.
file creates a new file
dir creates a new directory
dev creates a new device
<devtype> is either block, char or pipe
block creates a block device
char creates a character deivce
pipe creates a pipe, this will ignore the <major> and <minor> fields
<major> and <minor> are the major and minor numbers used for the device.
##

End /etc/sysconfig/createfiles

D.25. /etc/sysconfig/network-devices/ifup
#!/bin/sh

Linux From Scratch - Version 6.8

281

##
Begin $network_devices/ifup
#
Description : Interface Up
#
Authors : Nathan Coulson - nathan@linuxfromscratch.org
Kevin P. Fleming - kpfleming@linuxfromscratch.org
#
Version : 00.00
#
Notes : the IFCONFIG variable is passed to the scripts found
in the services directory, to indicate what file the
service should source to get environmental variables.
#
##

. /etc/sysconfig/rc

. ${rc_functions}

Collect a list of configuration files for our interface
if [-n "${2}"]; then
 for file in ${@#$1} # All parameters except $1
 do
 FILES="${FILES} ${network_devices}/ifconfig.${1}/${file}"
 done
elif [-d "${network_devices}/ifconfig.${1}"]; then
 FILES=`echo ${network_devices}/ifconfig.${1}/*`
else
 FILES="${network_devices}/ifconfig.${1}"
fi

boot_mesg "Bringing up the ${1} interface..."
boot_mesg_flush

Process each configruation file
for file in ${FILES}; do
 # skip backup files
 if ["${file}" != "${file%""~""}"]; then
 continue
 fi

 if [! -f "${file}"]; then
 boot_mesg "${file} is not a network configuration file or directory." ${WARNING}
 echo_warning
 continue
 fi

 (
 . ${file}

 # Will not process this service if started by boot, and ONBOOT
 # is not set to yes
 if ["${IN_BOOT}" = "1" -a "${ONBOOT}" != "yes"]; then
 continue
 fi
 # Will not process this service if started by hotplug, and
 # ONHOTPLUG is not set to yes

Linux From Scratch - Version 6.8

282

 if ["${IN_HOTPLUG}" = "1" -a "${ONHOTPLUG}" != "yes" \
 -a "${HOSTNAME}" != "(none)"]; then continue
 fi

 if [-n "${SERVICE}" -a -x "${network_devices}/services/${SERVICE}"]; then
 if [-z "${CHECK_LINK}" -o "${CHECK_LINK}" = "y" \
 -o "${CHECK_LINK}" = "yes" -o "${CHECK_LINK}" = "1"]; then
 if ip link show ${1} > /dev/null 2>&1; then
 link_status=`ip link show ${1}`
 if [-n "${link_status}"]; then
 if ! echo "${link_status}" | grep -q UP; then
 ip link set ${1} up
 fi
 fi
 else
 boot_mesg "Interface ${1} doesn't exist." ${WARNING}
 echo_warning
 continue
 fi
 fi
 IFCONFIG=${file} ${network_devices}/services/${SERVICE} ${1} up
 else
 boot_mesg "Unable to process ${file}. Either" ${FAILURE}
 boot_mesg " the SERVICE variable was not set,"
 boot_mesg " or the specified service cannot be executed."
 echo_failure
 continue
 fi
)
done

End $network_devices/ifup

D.26. /etc/sysconfig/network-devices/ifdown
#!/bin/sh
##
Begin $network_devices/ifdown
#
Description : Interface Down
#
Authors : Nathan Coulson - nathan@linuxfromscratch.org
Kevin P. Fleming - kpfleming@linuxfromscratch.org
#
Version : 00.01
#
Notes : the IFCONFIG variable is passed to the scripts found
in the services directory, to indicate what file the
service should source to get environmental variables.
#
##

. /etc/sysconfig/rc

. ${rc_functions}

Collect a list of configuration files for our interface

Linux From Scratch - Version 6.8

283

if [-n "${2}"]; then
 for file in ${@#$1}; do # All parameters except $1
 FILES="${FILES} ${network_devices}/ifconfig.${1}/${file}"
 done
elif [-d "${network_devices}/ifconfig.${1}"]; then
 FILES=`echo ${network_devices}/ifconfig.${1}/*`
else
 FILES="${network_devices}/ifconfig.${1}"
fi

Reverse the order configuration files are processed in
for file in ${FILES}; do
 FILES2="${file} ${FILES2}"
done
FILES=${FILES2}

Process each configuration file
for file in ${FILES}; do
 # skip backup files
 if ["${file}" != "${file%""~""}"]; then
 continue
 fi

 if [! -f "${file}"]; then
 boot_mesg "${file} is not a network configuration file or directory." ${WARNING}
 echo_warning
 continue
 fi
 (
 . ${file}

 # Will not process this service if started by boot, and ONBOOT
 # is not set to yes
 if ["${IN_BOOT}" = "1" -a "${ONBOOT}" != "yes"]; then
 continue
 fi

 # Will not process this service if started by hotplug, and
 # ONHOTPLUG is not set to yes
 if ["${IN_HOTPLUG}" = "1" -a "${ONHOTPLUG}" != "yes"]; then
 continue
 fi

 # This will run the service script, if SERVICE is set
 if [-n "${SERVICE}" -a -x "${network_devices}/services/${SERVICE}"]; then
 if ip link show ${1} > /dev/null 2>&1
 then
 IFCONFIG=${file} ${network_devices}/services/${SERVICE} ${1} down
 else
 boot_mesg "Interface ${1} doesn't exist." ${WARNING}
 echo_warning
 fi
 else
 boot_mesg -n "Unable to process ${file}. Either" ${FAILURE}
 boot_mesg -n " the SERVICE variable was not set,"
 boot_mesg " or the specified service cannot be executed."
 echo_failure

Linux From Scratch - Version 6.8

284

 continue
 fi
)
done

if [-z "${2}"]; then
 link_status=`ip link show $1 2>/dev/null`
 if [-n "${link_status}"]; then
 if echo "${link_status}" | grep -q UP; then
 boot_mesg "Bringing down the ${1} interface..."
 ip link set ${1} down
 evaluate_retval
 fi
 fi
fi

End $network_devices/ifdown

D.27. /etc/sysconfig/network-devices/services/ipv4-static
#!/bin/sh
##
Begin $network_devices/services/ipv4-static
#
Description : IPV4 Static Boot Script
#
Authors : Nathan Coulson - nathan@linuxfromscratch.org
Kevin P. Fleming - kpfleming@linuxfromscratch.org
#
Version : 00.00
#
Notes :
#
##

. /etc/sysconfig/rc

. ${rc_functions}

. ${IFCONFIG}

if [-z "${IP}"]; then
 boot_mesg "IP variable missing from ${IFCONFIG}, cannot continue." ${FAILURE}
 echo_failure
 exit 1
fi

if [-z "${PREFIX}" -a -z "${PEER}"]; then
 boot_mesg -n "PREFIX variable missing from ${IFCONFIG}," ${WARNING}
 boot_mesg " assuming 24."
 echo_warning
 PREFIX=24
 args="${args} ${IP}/${PREFIX}"
elif [-n "${PREFIX}" -a -n "${PEER}"]; then
 boot_mesg "PREFIX and PEER both specified in ${IFCONFIG}, cannot continue." ${FAILURE}
 echo_failure
 exit 1
elif [-n "${PREFIX}"]; then

Linux From Scratch - Version 6.8

285

 args="${args} ${IP}/${PREFIX}"
elif [-n "${PEER}"]; then
 args="${args} ${IP} peer ${PEER}"
fi

if [-n "${BROADCAST}"]; then
 args="${args} broadcast ${BROADCAST}"
fi

case "${2}" in
 up)
 boot_mesg "Adding IPv4 address ${IP} to the ${1} interface..."
 ip addr add ${args} dev ${1}
 evaluate_retval

 if [-n "${GATEWAY}"]; then
 if ip route | grep -q default; then
 boot_mesg "Gateway already setup; skipping." ${WARNING}
 echo_warning
 else
 boot_mesg "Setting up default gateway..."
 ip route add default via ${GATEWAY} dev ${1}
 evaluate_retval
 fi
 fi
 ;;

 down)
 if [-n "${GATEWAY}"]; then
 boot_mesg "Removing default gateway..."
 ip route del default
 evaluate_retval
 fi

 boot_mesg "Removing IPv4 address ${IP} from the ${1} interface..."
 ip addr del ${args} dev ${1}
 evaluate_retval
 ;;

 *)
 echo "Usage: ${0} [interface] {up|down}"
 exit 1
 ;;
esac

End $network_devices/services/ipv4-static

D.28. /etc/sysconfig/network-devices/services/ipv4-static-route
#!/bin/sh
##
Begin $network_devices/services/ipv4-static-route
#
Description : IPV4 Static Route Script
#
Authors : Kevin P. Fleming - kpfleming@linuxfromscratch.org

Linux From Scratch - Version 6.8

286

#
Version : 00.00
#
Notes :
#
##

. /etc/sysconfig/rc

. ${rc_functions}

. ${IFCONFIG}

case "${TYPE}" in
 ("" | "network")
 need_ip=1
 need_gateway=1
 ;;

 ("default")
 need_gateway=1
 args="${args} default"
 desc="default"
 ;;

 ("host")
 need_ip=1
 ;;

 ("unreachable")
 need_ip=1
 args="${args} unreachable"
 desc="unreachable "
 ;;

 (*)
 boot_mesg "Unknown route type (${TYPE}) in ${IFCONFIG}, cannot continue." ${FAILURE}
 echo_failure
 exit 1
 ;;
esac

if [-n "${need_ip}"]; then
 if [-z "${IP}"]; then
 boot_mesg "IP variable missing from ${IFCONFIG}, cannot continue." ${FAILURE}
 echo_failure
 exit 1
 fi

 if [-z "${PREFIX}"]; then
 boot_mesg "PREFIX variable missing from ${IFCONFIG}, cannot continue." ${FAILURE}
 echo_failure
 exit 1
 fi

 args="${args} ${IP}/${PREFIX}"
 desc="${desc}${IP}/${PREFIX}"
fi

Linux From Scratch - Version 6.8

287

if [-n "${need_gateway}"]; then
 if [-z "${GATEWAY}"]; then
 boot_mesg "GATEWAY variable missing from ${IFCONFIG}, cannot continue." ${FAILURE}
 echo_failure
 exit 1
 fi
 args="${args} via ${GATEWAY}"
fi

if [-n "${SOURCE}"]; then
 args="${args} src ${SOURCE}"
fi

case "${2}" in
 up)
 boot_mesg "Adding '${desc}' route to the ${1} interface..."
 ip route add ${args} dev ${1}
 evaluate_retval
 ;;

 down)
 boot_mesg "Removing '${desc}' route from the ${1} interface..."
 ip route del ${args} dev ${1}
 evaluate_retval
 ;;

 *)
 echo "Usage: ${0} [interface] {up|down}"
 exit 1
 ;;
esac

End $network_devices/services/ipv4-static-route

Linux From Scratch - Version 6.8

288

Appendix E. Udev configuration rules
The rules from udev-config-20100128.tar.bz2 in this appendix are listed for convenience. Installation is normally
done via instructions in Section 6.60, “Udev-166”.

E.1. 55-lfs.rules
/etc/udev/rules.d/55-lfs.rules: Rule definitions for LFS.

Core kernel devices

This causes the system clock to be set as soon as /dev/rtc becomes available.
SUBSYSTEM=="rtc", ACTION=="add", MODE="0644", RUN+="/etc/rc.d/init.d/setclock start"
KERNEL=="rtc", ACTION=="add", MODE="0644", RUN+="/etc/rc.d/init.d/setclock start"

Comms devices

KERNEL=="ippp[0-9]*", GROUP="dialout"
KERNEL=="isdn[0-9]*", GROUP="dialout"
KERNEL=="isdnctrl[0-9]*", GROUP="dialout"
KERNEL=="dcbri[0-9]*", GROUP="dialout"

Linux From Scratch - Version 6.8

289

Appendix F. LFS Licenses
This book is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.0 License.

Computer instructions may be extracted from the book under the MIT License.

F.1. Creative Commons License
Creative Commons Legal Code

Attribution-NonCommercial-ShareAlike 2.0

Important

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE LEGAL
SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT
RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATION ON AN "AS-IS"
BASIS. CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE INFORMATION
PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS
PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER
APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE
OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE
BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED
HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work
in its entirety in unmodified form, along with a number of other contributions, constituting separate and
independent works in themselves, are assembled into a collective whole. A work that constitutes a Collective
Work will not be considered a Derivative Work (as defined below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such
as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording,
art reproduction, abridgment, condensation, or any other form in which the Work may be recast, transformed,
or adapted, except that a work that constitutes a Collective Work will not be considered a Derivative Work
for the purpose of this License. For the avoidance of doubt, where the Work is a musical composition or
sound recording, the synchronization of the Work in timed-relation with a moving image ("synching") will be
considered a Derivative Work for the purpose of this License.

c. "Licensor" means the individual or entity that offers the Work under the terms of this License.

d. "Original Author" means the individual or entity who created the Work.

e. "Work" means the copyrightable work of authorship offered under the terms of this License.

f. "You" means an individual or entity exercising rights under this License who has not previously violated the
terms of this License with respect to the Work, or who has received express permission from the Licensor to
exercise rights under this License despite a previous violation.

Linux From Scratch - Version 6.8

290

g. "License Elements" means the following high-level license attributes as selected by Licensor and indicated in
the title of this License: Attribution, Noncommercial, ShareAlike.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first
sale or other limitations on the exclusive rights of the copyright owner under copyright law or other applicable
laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide,
royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights
in the Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work
as incorporated in the Collective Works;

b. to create and reproduce Derivative Works;

c. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of
a digital audio transmission the Work including as incorporated in Collective Works;

d. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of
a digital audio transmission Derivative Works;

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above
rights include the right to make such modifications as are technically necessary to exercise the rights in other
media and formats. All rights not expressly granted by Licensor are hereby reserved, including but not limited
to the rights set forth in Sections 4(e) and 4(f).

4. Restrictions.The license granted in Section 3 above is expressly made subject to and limited by the following
restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the
terms of this License, and You must include a copy of, or the Uniform Resource Identifier for, this License
with every copy or phonorecord of the Work You distribute, publicly display, publicly perform, or publicly
digitally perform. You may not offer or impose any terms on the Work that alter or restrict the terms of this
License or the recipients' exercise of the rights granted hereunder. You may not sublicense the Work. You must
keep intact all notices that refer to this License and to the disclaimer of warranties. You may not distribute,
publicly display, publicly perform, or publicly digitally perform the Work with any technological measures
that control access or use of the Work in a manner inconsistent with the terms of this License Agreement.
The above applies to the Work as incorporated in a Collective Work, but this does not require the Collective
Work apart from the Work itself to be made subject to the terms of this License. If You create a Collective
Work, upon notice from any Licensor You must, to the extent practicable, remove from the Collective Work
any reference to such Licensor or the Original Author, as requested. If You create a Derivative Work, upon
notice from any Licensor You must, to the extent practicable, remove from the Derivative Work any reference
to such Licensor or the Original Author, as requested.

b. You may distribute, publicly display, publicly perform, or publicly digitally perform a Derivative Work only
under the terms of this License, a later version of this License with the same License Elements as this License,
or a Creative Commons iCommons license that contains the same License Elements as this License (e.g.
Attribution-NonCommercial-ShareAlike 2.0 Japan). You must include a copy of, or the Uniform Resource
Identifier for, this License or other license specified in the previous sentence with every copy or phonorecord
of each Derivative Work You distribute, publicly display, publicly perform, or publicly digitally perform. You
may not offer or impose any terms on the Derivative Works that alter or restrict the terms of this License
or the recipients' exercise of the rights granted hereunder, and You must keep intact all notices that refer to
this License and to the disclaimer of warranties. You may not distribute, publicly display, publicly perform,

Linux From Scratch - Version 6.8

291

or publicly digitally perform the Derivative Work with any technological measures that control access or use
of the Work in a manner inconsistent with the terms of this License Agreement. The above applies to the
Derivative Work as incorporated in a Collective Work, but this does not require the Collective Work apart
from the Derivative Work itself to be made subject to the terms of this License.

c. You may not exercise any of the rights granted to You in Section 3 above in any manner that is primarily
intended for or directed toward commercial advantage or private monetary compensation. The exchange of
the Work for other copyrighted works by means of digital file-sharing or otherwise shall not be considered to
be intended for or directed toward commercial advantage or private monetary compensation, provided there
is no payment of any monetary compensation in connection with the exchange of copyrighted works.

d. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or any Derivative
Works or Collective Works, You must keep intact all copyright notices for the Work and give the Original
Author credit reasonable to the medium or means You are utilizing by conveying the name (or pseudonym
if applicable) of the Original Author if supplied; the title of the Work if supplied; to the extent reasonably
practicable, the Uniform Resource Identifier, if any, that Licensor specifies to be associated with the Work,
unless such URI does not refer to the copyright notice or licensing information for the Work; and in the case of
a Derivative Work, a credit identifying the use of the Work in the Derivative Work (e.g., "French translation
of the Work by Original Author," or "Screenplay based on original Work by Original Author"). Such credit
may be implemented in any reasonable manner; provided, however, that in the case of a Derivative Work or
Collective Work, at a minimum such credit will appear where any other comparable authorship credit appears
and in a manner at least as prominent as such other comparable authorship credit.

e. For the avoidance of doubt, where the Work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor reserves the exclusive right to collect, whether
individually or via a performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public
performance or public digital performance (e.g. webcast) of the Work if that performance is primarily
intended for or directed toward commercial advantage or private monetary compensation.

ii. Mechanical Rights and Statutory Royalties. Licensor reserves the exclusive right to collect, whether
individually or via a music rights agency or designated agent (e.g. Harry Fox Agency), royalties for any
phonorecord You create from the Work ("cover version") and distribute, subject to the compulsory license
created by 17 USC Section 115 of the US Copyright Act (or the equivalent in other jurisdictions), if Your
distribution of such cover version is primarily intended for or directed toward commercial advantage or
private monetary compensation. 6. Webcasting Rights and Statutory Royalties. For the avoidance of doubt,
where the Work is a sound recording, Licensor reserves the exclusive right to collect, whether individually
or via a performance-rights society (e.g. SoundExchange), royalties for the public digital performance (e.g.
webcast) of the Work, subject to the compulsory license created by 17 USC Section 114 of the US Copyright
Act (or the equivalent in other jurisdictions), if Your public digital performance is primarily intended for
or directed toward commercial advantage or private monetary compensation.

f. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording,
Licensor reserves the exclusive right to collect, whether individually or via a performance-rights society
(e.g. SoundExchange), royalties for the public digital performance (e.g. webcast) of the Work, subject to
the compulsory license created by 17 USC Section 114 of the US Copyright Act (or the equivalent in other
jurisdictions), if Your public digital performance is primarily intended for or directed toward commercial
advantage or private monetary compensation.

5. Representations, Warranties and Disclaimer

Linux From Scratch - Version 6.8

292

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS
FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR
OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR
NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT
WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL,
CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR
THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the
terms of this License. Individuals or entities who have received Derivative Works or Collective Works from
You under this License, however, will not have their licenses terminated provided such individuals or entities
remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of
this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the
applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work
under different license terms or to stop distributing the Work at any time; provided, however that any such
election will not serve to withdraw this License (or any other license that has been, or is required to be, granted
under the terms of this License), and this License will continue in full force and effect unless terminated as
stated above.

8. Miscellaneous

a. Each time You distribute or publicly digitally perform the Work or a Collective Work, the Licensor offers
to the recipient a license to the Work on the same terms and conditions as the license granted to You under
this License.

b. Each time You distribute or publicly digitally perform a Derivative Work, Licensor offers to the recipient a
license to the original Work on the same terms and conditions as the license granted to You under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity
or enforceability of the remainder of the terms of this License, and without further action by the parties to this
agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid
and enforceable.

d. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver
or consent shall be in writing and signed by the party to be charged with such waiver or consent.

e. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There
are no understandings, agreements or representations with respect to the Work not specified here. Licensor
shall not be bound by any additional provisions that may appear in any communication from You. This License
may not be modified without the mutual written agreement of the Licensor and You.

Linux From Scratch - Version 6.8

293

Important

Creative Commons is not a party to this License, and makes no warranty whatsoever in connection with
the Work. Creative Commons will not be liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special, incidental or consequential damages arising
in connection to this license. Notwithstanding the foregoing two (2) sentences, if Creative Commons has
expressly identified itself as the Licensor hereunder, it shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL,
neither party will use the trademark "Creative Commons" or any related trademark or logo of Creative
Commons without the prior written consent of Creative Commons. Any permitted use will be in compliance
with Creative Commons' then-current trademark usage guidelines, as may be published on its website or
otherwise made available upon request from time to time.

Creative Commons may be contacted at http:// creativecommons. org/.

F.2. The MIT License
Copyright © 1999-2011 Gerard Beekmans

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

http://creativecommons.org/

Linux From Scratch - Version 6.8

294

Index
Packages
Autoconf: 139
Automake: 140
Bash: 130
tools: 53

Binutils: 93
tools, pass 1: 32
tools, pass 2: 41

Bison: 124
Bootscripts: 194
usage: 196

Bzip2: 142
tools: 54

Coreutils: 117
tools: 55

DejaGNU: 51
Diffutils: 144
tools: 56

E2fsprogs: 114
Expect: 49
File: 146
tools: 57

Findutils: 147
tools: 58

Flex: 149
Gawk: 145
tools: 59

GCC: 100
tools, pass 1: 34
tools, pass 2: 43

GDBM: 133
Gettext: 151
tools: 60

Glibc: 83
tools: 37

GMP: 96
Grep: 127
tools: 61

Groff: 153
GRUB: 156
Gzip: 158
tools: 62

Iana-Etc: 122
Inetutils: 134

IPRoute2: 160
Kbd: 162
Less: 164
Libtool: 132
Linux: 216
API headers: 81
tools, API headers: 36

M4: 123
tools: 63

Make: 165
tools: 64

Man-DB: 168
Man-pages: 82
Module-Init-Tools: 171
MPC: 99
MPFR: 98
Ncurses: 107
tools: 52

Patch: 173
tools: 65

Perl: 136
tools: 66

Pkg-config: 106
Procps: 125
Psmisc: 174
Readline: 128
Sed: 105
tools: 67

Shadow: 175
configuring: 176

Sysklogd: 178
configuring: 178

Sysvinit: 179
configuring: 180

Tar: 182
tools: 68

Tcl: 47
Texinfo: 183
tools: 69

Udev: 185
usage: 204

Util-linux: 110
Vim: 188
xz: 166
tools: 70

Zlib: 92

Linux From Scratch - Version 6.8

295

Programs
a2p: 136, 137
accessdb: 168, 169
acinstall: 140, 140
aclocal: 140, 140
aclocal-1.11.1: 140, 140
addftinfo: 153, 153
addpart: 110, 111
addr2line: 93, 94
afmtodit: 153, 153
agetty: 110, 111
apropos: 168, 170
ar: 93, 94
arch: 110, 111
as: 93, 94
ata_id: 185, 186
autoconf: 139, 139
autoheader: 139, 139
autom4te: 139, 139
automake: 140, 140
automake-1.11.1: 140, 140
autopoint: 151, 151
autoreconf: 139, 139
autoscan: 139, 139
autoupdate: 139, 139
awk: 145, 145
badblocks: 114, 115
base64: 117, 118
basename: 117, 118
bash: 130, 131
bashbug: 130, 131
bigram: 147, 147
bison: 124, 124
blkid: 110, 111
blockdev: 110, 111
bootlogd: 179, 180
bunzip2: 142, 143
bzcat: 142, 143
bzcmp: 142, 143
bzdiff: 142, 143
bzegrep: 142, 143
bzfgrep: 142, 143
bzgrep: 142, 143
bzip2: 142, 143
bzip2recover: 142, 143
bzless: 142, 143
bzmore: 142, 143

c++: 100, 103
c++filt: 93, 94
c2ph: 136, 137
cal: 110, 111
captoinfo: 107, 108
cat: 117, 118
catchsegv: 83, 87
catman: 168, 170
cc: 100, 103
cdrom_id: 185, 186
cfdisk: 110, 111
chage: 175, 177
chattr: 114, 115
chcon: 117, 118
chem: 153, 153
chfn: 175, 177
chgpasswd: 175, 177
chgrp: 117, 118
chkdupexe: 110, 111
chmod: 117, 119
chown: 117, 119
chpasswd: 175, 177
chroot: 117, 119
chrt: 110, 111
chsh: 175, 177
chvt: 162, 163
cksum: 117, 119
clear: 107, 108
cmp: 144, 144
code: 147, 147
col: 110, 111
colcrt: 110, 111
collect: 185, 186
colrm: 110, 111
column: 110, 111
comm: 117, 119
compile: 140, 140
compile_et: 114, 115
config.charset: 151, 151
config.guess: 140, 140
config.rpath: 151, 151
config.sub: 140, 140
config_data: 136, 137
corelist: 136, 137
cp: 117, 119
cpan: 136, 137
cpan2dist: 136, 137

Linux From Scratch - Version 6.8

296

cpanp: 136, 137
cpanp-run-perl: 136, 137
cpp: 100, 103
create_floppy_devices: 185, 186
csplit: 117, 119
ctrlaltdel: 110, 111
ctstat: 160, 160
cut: 117, 119
cytune: 110, 111
date: 117, 119
dd: 117, 119
ddate: 110, 111
deallocvt: 162, 163
debugfs: 114, 115
delpart: 110, 111
depcomp: 140, 140
depmod: 171, 171
df: 117, 119
diff: 144, 144
diff3: 144, 144
dir: 117, 119
dircolors: 117, 119
dirname: 117, 119
dmesg: 110, 111
dprofpp: 136, 137
du: 117, 119
dumpe2fs: 114, 115
dumpkeys: 162, 163
e2freefrag: 114, 115
e2fsck: 114, 115
e2image: 114, 115
e2initrd_helper: 114, 115
e2label: 114, 115
e2undo: 114, 115
echo: 117, 119
edd_id: 185, 186
egrep: 127, 127
elisp-comp: 140, 141
enc2xs: 136, 137
env: 117, 119
envsubst: 151, 151
eqn: 153, 153
eqn2graph: 153, 153
ex: 188, 190
expand: 117, 119
expect: 49, 50
expiry: 175, 177

expr: 117, 119
factor: 117, 119
faillog: 175, 177
fallocate: 110, 111
false: 117, 119
fdformat: 110, 111
fdisk: 110, 111
fgconsole: 162, 163
fgrep: 127, 127
file: 146, 146
filefrag: 114, 115
find: 147, 147
find2perl: 136, 137
findfs: 110, 111
findmnt: 110, 111
firmware.sh: 185, 186
flex: 149, 150
flock: 110, 111
fmt: 117, 119
fold: 117, 119
frcode: 147, 147
free: 125, 125
fsck: 110, 111
fsck.cramfs: 110, 111
fsck.ext2: 114, 116
fsck.ext3: 114, 116
fsck.ext4: 114, 116
fsck.ext4dev: 114, 116
fsck.minix: 110, 111
fsfreeze: 110, 111
fstab-decode: 179, 180
fstab_import: 185, 186
fstrim: 110, 111
ftp: 134, 135
fuser: 174, 174
g++: 100, 103
gawk: 145, 145
gawk-3.1.8: 145, 145
gcc: 100, 103
gccbug: 100, 103
gcov: 100, 103
gdiffmk: 153, 154
gencat: 83, 87
genl: 160, 160
geqn: 153, 154
getconf: 83, 87
getent: 83, 87

Linux From Scratch - Version 6.8

297

getkeycodes: 162, 163
getopt: 110, 111
gettext: 151, 151
gettext.sh: 151, 151
gettextize: 151, 151
gpasswd: 175, 177
gprof: 93, 94
grap2graph: 153, 154
grcat: 145, 145
grep: 127, 127
grn: 153, 154
grodvi: 153, 154
groff: 153, 154
groffer: 153, 154
grog: 153, 154
grolbp: 153, 154
grolj4: 153, 154
grops: 153, 154
grotty: 153, 154
groupadd: 175, 177
groupdel: 175, 177
groupmems: 175, 177
groupmod: 175, 177
groups: 117, 119
grpck: 175, 177
grpconv: 175, 177
grpunconv: 175, 177
grub-bin2h: 156, 156
grub-editenv: 156, 156
grub-install: 156, 156
grub-mkconfig: 156, 156
grub-mkdevicemap: 156, 156
grub-mkelfimage: 156, 156
grub-mkimage: 156, 156
grub-mkisofs: 156, 156
grub-mkpasswd-pbkdf2: 156, 157
grub-mkrelpath: 156, 157
grub-mkrescue: 156, 157
grub-probe: 156, 157
grub-reboot: 156, 157
grub-script-check: 156, 157
grub-set-default: 156, 157
grub-setup: 156, 157
gtbl: 153, 154
gunzip: 158, 158
gzexe: 158, 158
gzip: 158, 158

h2ph: 136, 137
h2xs: 136, 137
halt: 179, 180
head: 117, 119
hexdump: 110, 111
hostid: 117, 119
hostname: 134, 135
hostname: 151, 151
hpftodit: 153, 154
hwclock: 110, 111
i386: 110, 111
iconv: 83, 87
iconvconfig: 83, 87
id: 117, 119
ifcfg: 160, 160
ifnames: 139, 139
ifstat: 160, 161
igawk: 145, 145
indxbib: 153, 154
info: 183, 183
infocmp: 107, 108
infokey: 183, 184
infotocap: 107, 108
init: 179, 180
insmod: 171, 171
insmod.static: 171, 171
install: 117, 119
install-info: 183, 184
install-sh: 140, 141
instmodsh: 136, 137
ionice: 110, 111
ip: 160, 161
ipcmk: 110, 112
ipcrm: 110, 112
ipcs: 110, 112
isosize: 110, 112
join: 117, 119
kbdrate: 162, 163
kbd_mode: 162, 163
kill: 125, 125
killall: 174, 174
killall5: 179, 181
klogd: 178, 178
last: 179, 181
lastb: 179, 181
lastlog: 175, 177
ld: 93, 94

Linux From Scratch - Version 6.8

298

ldattach: 110, 112
ldconfig: 83, 87
ldd: 83, 87
lddlibc4: 83, 87
less: 164, 164
lessecho: 164, 164
lesskey: 164, 164
lex: 149, 150
lexgrog: 168, 170
lfskernel-2.6.37: 216, 218
libnetcfg: 136, 137
libtool: 132, 132
libtoolize: 132, 132
line: 110, 112
link: 117, 119
linux32: 110, 112
linux64: 110, 112
lkbib: 153, 154
ln: 117, 119
lnstat: 160, 161
loadkeys: 162, 163
loadunimap: 162, 163
locale: 83, 87
localedef: 83, 87
locate: 147, 148
logger: 110, 112
login: 175, 177
logname: 117, 119
logoutd: 175, 177
logsave: 114, 116
look: 110, 112
lookbib: 153, 154
losetup: 110, 112
ls: 117, 120
lsattr: 114, 116
lsblk: 110, 112
lscpu: 110, 112
lsmod: 171, 172
lzcat: 166, 166
lzcmp: 166, 166
lzdiff: 166, 166
lzegrep: 166, 166
lzfgrep: 166, 166
lzgrep: 166, 166
lzless: 166, 166
lzma: 166, 166
lzmadec: 166, 166

lzmainfo: 166, 166
lzmore: 166, 166
m4: 123, 123
make: 165, 165
makeinfo: 183, 184
man: 168, 170
mandb: 168, 170
manpath: 168, 170
mapscrn: 162, 163
mcookie: 110, 112
md5sum: 117, 120
mdate-sh: 140, 141
mesg: 179, 181
missing: 140, 141
mkdir: 117, 120
mke2fs: 114, 116
mkfifo: 117, 120
mkfs: 110, 112
mkfs.bfs: 110, 112
mkfs.cramfs: 110, 112
mkfs.ext2: 114, 116
mkfs.ext3: 114, 116
mkfs.ext4: 114, 116
mkfs.ext4dev: 114, 116
mkfs.minix: 110, 112
mkinstalldirs: 140, 141
mklost+found: 114, 116
mknod: 117, 120
mkswap: 110, 112
mktemp: 117, 120
mk_cmds: 114, 116
mmroff: 153, 154
modinfo: 171, 172
modprobe: 171, 172
more: 110, 112
mount: 110, 112
mountpoint: 179, 181
msgattrib: 151, 152
msgcat: 151, 152
msgcmp: 151, 152
msgcomm: 151, 152
msgconv: 151, 152
msgen: 151, 152
msgexec: 151, 152
msgfilter: 151, 152
msgfmt: 151, 152
msggrep: 151, 152

Linux From Scratch - Version 6.8

299

msginit: 151, 152
msgmerge: 151, 152
msgunfmt: 151, 152
msguniq: 151, 152
mtrace: 83, 87
mv: 117, 120
namei: 110, 112
ncursesw5-config: 107, 108
neqn: 153, 154
newgrp: 175, 177
newusers: 175, 177
ngettext: 151, 152
nice: 117, 120
nl: 117, 120
nm: 93, 94
nohup: 117, 120
nologin: 175, 177
nproc: 117, 120
nroff: 153, 154
nscd: 83, 87
nstat: 160, 161
objcopy: 93, 94
objdump: 93, 94
od: 117, 120
oldfind: 147, 148
openvt: 162, 163
partx: 110, 112
passwd: 175, 177
paste: 117, 120
patch: 173, 173
pathchk: 117, 120
path_id: 185, 186
pcprofiledump: 83, 87
pdfroff: 153, 154
pdftexi2dvi: 183, 184
peekfd: 174, 174
perl: 136, 137
perl5.12.3: 136, 137
perlbug: 136, 137
perldoc: 136, 137
perlivp: 136, 137
perlthanks: 136, 137
pfbtops: 153, 154
pg: 110, 112
pgawk: 145, 145
pgawk-3.1.8: 145, 145
pgrep: 125, 125

pic: 153, 154
pic2graph: 153, 154
piconv: 136, 138
pidof: 179, 181
ping: 134, 135
ping6: 134, 135
pinky: 117, 120
pivot_root: 110, 112
pkg-config: 106, 106
pkill: 125, 125
pl2pm: 136, 138
pmap: 125, 125
pod2html: 136, 138
pod2latex: 136, 138
pod2man: 136, 138
pod2text: 136, 138
pod2usage: 136, 138
podchecker: 136, 138
podselect: 136, 138
post-grohtml: 153, 154
poweroff: 179, 181
pr: 117, 120
pre-grohtml: 153, 154
preconv: 153, 154
printenv: 117, 120
printf: 117, 120
prove: 136, 138
prtstat: 174, 174
ps: 125, 125
psed: 136, 138
psfaddtable: 162, 163
psfgettable: 162, 163
psfstriptable: 162, 163
psfxtable: 162, 163
pstree: 174, 174
pstree.x11: 174, 174
pstruct: 136, 138
ptar: 136, 138
ptardiff: 136, 138
ptx: 117, 120
pt_chown: 83, 88
pwcat: 145, 145
pwck: 175, 177
pwconv: 175, 177
pwd: 117, 120
pwdx: 125, 125
pwunconv: 175, 177

Linux From Scratch - Version 6.8

300

py-compile: 140, 141
ranlib: 93, 94
rcp: 134, 135
readelf: 93, 94
readlink: 117, 120
readprofile: 110, 112
reboot: 179, 181
recode-sr-latin: 151, 152
refer: 153, 154
rename: 110, 112
renice: 110, 112
reset: 107, 108
resize2fs: 114, 116
resizecons: 162, 163
rev: 110, 112
rexec: 134, 135
rlogin: 134, 135
rm: 117, 120
rmdir: 117, 120
rmmod: 171, 172
rmt: 182, 182
roff2dvi: 153, 155
roff2html: 153, 155
roff2pdf: 153, 155
roff2ps: 153, 155
roff2text: 153, 155
roff2x: 153, 155
routef: 160, 161
routel: 160, 161
rpcgen: 83, 88
rpcinfo: 83, 88
rsh: 134, 135
rtacct: 160, 161
rtcwake: 110, 112
rtmon: 160, 161
rtpr: 160, 161
rtstat: 160, 161
runcon: 117, 120
runlevel: 179, 181
runtest: 51, 51
rview: 188, 190
rvim: 188, 190
s2p: 136, 138
script: 110, 112
scriptreplay: 110, 112
scsi_id: 185, 186
sdiff: 144, 144

sed: 105, 105
seq: 117, 120
setarch: 110, 112
setfont: 162, 163
setkeycodes: 162, 163
setleds: 162, 163
setmetamode: 162, 163
setsid: 110, 112
setterm: 110, 112
sfdisk: 110, 112
sg: 175, 177
sh: 130, 131
sha1sum: 117, 120
sha224sum: 117, 120
sha256sum: 117, 120
sha384sum: 117, 120
sha512sum: 117, 120
shasum: 136, 138
showconsolefont: 162, 163
showkey: 162, 163
shred: 117, 120
shuf: 117, 120
shutdown: 179, 181
size: 93, 94
skill: 125, 125
slabtop: 125, 125
sleep: 117, 120
sln: 83, 88
snice: 125, 125
soelim: 153, 155
sort: 117, 120
splain: 136, 138
split: 117, 121
sprof: 83, 88
ss: 160, 161
stat: 117, 121
stdbuf: 117, 121
strings: 93, 94
strip: 93, 95
stty: 117, 121
su: 175, 177
sulogin: 179, 181
sum: 117, 121
swaplabel: 110, 113
swapoff: 110, 113
swapon: 110, 113
switch_root: 110, 113

Linux From Scratch - Version 6.8

301

symlink-tree: 140, 141
sync: 117, 121
sysctl: 125, 125
syslogd: 178, 178
tac: 117, 121
tail: 117, 121
tailf: 110, 113
talk: 134, 135
tar: 182, 182
taskset: 110, 113
tbl: 153, 155
tc: 160, 161
tclsh: 47, 48
tclsh8.5: 47, 48
tee: 117, 121
telinit: 179, 181
telnet: 134, 135
test: 117, 121
texi2dvi: 183, 184
texi2pdf: 183, 184
texindex: 183, 184
tfmtodit: 153, 155
tftp: 134, 135
tic: 107, 108
timeout: 117, 121
tload: 125, 126
toe: 107, 108
top: 125, 126
touch: 117, 121
tput: 107, 108
tr: 117, 121
traceroute: 134, 135
troff: 153, 155
true: 117, 121
truncate: 117, 121
tset: 107, 108
tsort: 117, 121
tty: 117, 121
tune2fs: 114, 116
tunelp: 110, 113
tzselect: 83, 88
udevadm: 185, 186
udevd: 185, 186
ul: 110, 113
umount: 110, 113
uname: 117, 121
uncompress: 158, 158

unexpand: 117, 121
unicode_start: 162, 163
unicode_stop: 162, 163
uniq: 117, 121
unlink: 117, 121
unlzma: 166, 167
unshare: 110, 113
unxz: 166, 167
updatedb: 147, 148
uptime: 125, 126
usb_id: 185, 186
useradd: 175, 177
userdel: 175, 177
usermod: 175, 177
users: 117, 121
utmpdump: 179, 181
uuidd: 110, 113
uuidgen: 110, 113
vdir: 117, 121
vi: 188, 190
view: 188, 190
vigr: 175, 177
vim: 188, 190
vimdiff: 188, 190
vimtutor: 188, 190
vipw: 175, 177
vmstat: 125, 126
w: 125, 126
wall: 110, 113
watch: 125, 126
wc: 117, 121
whatis: 168, 170
whereis: 110, 113
who: 117, 121
whoami: 117, 121
wipefs: 110, 113
write: 110, 113
write_cd_rules: 185, 186
write_net_rules: 185, 187
xargs: 147, 148
xgettext: 151, 152
xsubpp: 136, 138
xtrace: 83, 88
xxd: 188, 190
xz: 166, 167
xzcat: 166, 167
xzcmp: 166, 167

Linux From Scratch - Version 6.8

302

xzdec: 166, 167
xzdiff: 166, 167
xzegrep: 166, 167
xzfgrep: 166, 167
xzgrep: 166, 167
xzless: 166, 167
xzmore: 166, 167
yacc: 124, 124
yes: 117, 121
ylwrap: 140, 141
zcat: 158, 158
zcmp: 158, 158
zdiff: 158, 158
zdump: 83, 88
zegrep: 158, 158
zfgrep: 158, 158
zforce: 158, 158
zgrep: 158, 158
zic: 83, 88
zless: 158, 159
zmore: 158, 159
znew: 158, 159
zsoelim: 168, 170

Libraries
ld.so: 83, 88
libanl: 83, 88
libasprintf: 151, 152
libbfd: 93, 95
libblkid: 110, 113
libBrokenLocale: 83, 88
libbsd-compat: 83, 88
libbz2*: 142, 143
libc: 83, 88
libcidn: 83, 88
libcom_err: 114, 116
libcrypt: 83, 88
libcurses: 107, 108
libdl: 83, 88
libe2p: 114, 116
libexpect-5.45: 49, 50
libext2fs: 114, 116
libfl.a: 149, 150
libform: 107, 109
libg: 83, 88
libgcc*: 100, 103
libgcov: 100, 103

libgdbm: 133, 133
libgettextlib: 151, 152
libgettextpo: 151, 152
libgettextsrc: 151, 152
libgmp: 96, 97
libgmpxx: 96, 97
libgomp: 100, 103
libhistory: 128, 129
libiberty: 93, 95
libieee: 83, 88
libltdl: 132, 132
liblzma*: 166, 167
libm: 83, 88
libmagic: 146, 146
libmcheck: 83, 88
libmemusage: 83, 88
libmenu: 107, 109
libmp: 96, 97
libmpc: 99, 99
libmpfr: 98, 98
libmudflap*: 100, 104
libncurses: 107, 108
libnsl: 83, 88
libnss: 83, 88
libopcodes: 93, 95
libpanel: 107, 109
libpcprofile: 83, 88
libproc: 125, 126
libpthread: 83, 88
libreadline: 128, 129
libresolv: 83, 88
librpcsvc: 83, 89
librt: 83, 89
libSegFault: 83, 88
libss: 114, 116
libssp*: 100, 104
libstdbuf: 117, 121
libstdc++: 100, 104
libsupc++: 100, 104
libtcl8.5.so: 47, 48
libtclstub8.5.a: 47, 48
libthread_db: 83, 89
libudev: 185, 187
libutil: 83, 89
libuuid: 110, 113
liby.a: 124, 124
libz: 92, 92

Linux From Scratch - Version 6.8

303

preloadable_libintl: 151, 152

Scripts

checkfs: 194, 194
cleanfs: 194, 194
console: 194, 194
configuring: 197

consolelog: 194, 194
configuring: 197

functions: 194, 194
halt: 194, 194
ifdown: 194, 194
ifup: 194, 194
localnet: 194, 194
/etc/hosts: 210
configuring: 210

modules: 194, 194
mountfs: 194, 194
mountkernfs: 194, 194
network: 194, 194
/etc/hosts: 210
configuring: 211

rc: 194, 194
reboot: 194, 194
sendsignals: 194, 194
setclock: 194, 194
configuring: 197

static: 194, 195
swap: 194, 195
sysctl: 194, 195
sysklogd: 194, 195
configuring: 200

template: 194, 195
udev: 194, 195
udev_retry: 194, 195

Others

/boot/config-2.6.37: 216, 218
/boot/System.map-2.6.37: 216, 218
/dev/*: 73
/etc/fstab: 214
/etc/group: 79
/etc/hosts: 210
/etc/inittab: 180
/etc/inputrc: 200
/etc/ld.so.conf: 86

/etc/lfs-release: 223
/etc/localtime: 85
/etc/modprobe.d/usb.conf: 217
/etc/nsswitch.conf: 85
/etc/passwd: 79
/etc/profile: 203
/etc/protocols: 122
/etc/resolv.conf: 213
/etc/services: 122
/etc/syslog.conf: 178
/etc/udev: 185, 187
/etc/vimrc: 189
/usr/include/asm-generic/*.h: 81, 81
/usr/include/asm/*.h: 81, 81
/usr/include/drm/*.h: 81, 81
/usr/include/linux/*.h: 81, 81
/usr/include/mtd/*.h: 81, 81
/usr/include/rdma/*.h: 81, 81
/usr/include/scsi/*.h: 81, 81
/usr/include/sound/*.h: 81, 81
/usr/include/video/*.h: 81, 81
/usr/include/xen/*.h: 81, 81
/var/log/btmp: 79
/var/log/lastlog: 79
/var/log/wtmp: 79
/var/run/utmp: 79
man pages: 82, 82

	Linux From Scratch
	Table of Contents
	Preface
	Foreword
	Audience
	LFS Target Architectures
	LFS and Standards
	Rationale for Packages in the Book
	Prerequisites
	Host System Requirements
	Typography
	Structure
	Part I - Introduction
	Part II - Preparing for the Build
	Part III - Building the LFS System

	Errata

	Part I. Introduction
	Chapter 1. Introduction
	1.1. How to Build an LFS System
	1.2. What's new since the last release
	1.3. Changelog
	1.4. Resources
	1.4.1. FAQ
	1.4.2. Mailing Lists
	1.4.3. IRC
	1.4.4. Mirror Sites
	1.4.5. Contact Information

	1.5. Help
	1.5.1. Things to Mention
	1.5.2. Configure Script Problems
	1.5.3. Compilation Problems

	Part II. Preparing for the Build
	Chapter 2. Preparing a New Partition
	2.1. Introduction
	2.2. Creating a New Partition
	2.2.1. Other Partition Issues
	2.2.1.1. The Root Partition
	2.2.1.2. The Swap Partition
	2.2.1.3. Convenience Partitions

	2.3. Creating a File System on the Partition
	2.4. Mounting the New Partition

	Chapter 3. Packages and Patches
	3.1. Introduction
	3.2. All Packages
	3.3. Needed Patches

	Chapter 4. Final Preparations
	4.1. About $LFS
	4.2. Creating the $LFS/tools Directory
	4.3. Adding the LFS User
	4.4. Setting Up the Environment
	4.5. About SBUs
	4.6. About the Test Suites

	Chapter 5. Constructing a Temporary System
	5.1. Introduction
	5.2. Toolchain Technical Notes
	5.3. General Compilation Instructions
	5.4. Binutils-2.21 - Pass 1
	5.4.0.
	5.4.1. Installation of Cross Binutils
	5.4.2.

	5.5. GCC-4.5.2 - Pass 1
	5.5.0.
	5.5.1. Installation of Cross GCC
	5.5.2.

	5.6. Linux-2.6.37 API Headers
	5.6.0.
	5.6.1. Installation of Linux API Headers
	5.6.2.

	5.7. Glibc-2.13
	5.7.0.
	5.7.1. Installation of Glibc
	5.7.2.

	5.8. Adjusting the Toolchain
	5.9. Binutils-2.21 - Pass 2
	5.9.0.
	5.9.1. Installation of Binutils
	5.9.2.

	5.10. GCC-4.5.2 - Pass 2
	5.10.0.
	5.10.1. Installation of GCC
	5.10.2.

	5.11. Tcl-8.5.9
	5.11.0.
	5.11.1. Installation of Tcl
	5.11.2. Contents of Tcl

	5.12. Expect-5.45
	5.12.0.
	5.12.1. Installation of Expect
	5.12.2. Contents of Expect

	5.13. DejaGNU-1.4.4
	5.13.0.
	5.13.1. Installation of DejaGNU
	5.13.2. Contents of DejaGNU

	5.14. Ncurses-5.7
	5.14.0.
	5.14.1. Installation of Ncurses
	5.14.2.

	5.15. Bash-4.2
	5.15.0.
	5.15.1. Installation of Bash
	5.15.2.

	5.16. Bzip2-1.0.6
	5.16.0.
	5.16.1. Installation of Bzip2
	5.16.2.

	5.17. Coreutils-8.10
	5.17.0.
	5.17.1. Installation of Coreutils
	5.17.2.

	5.18. Diffutils-3.0
	5.18.0.
	5.18.1. Installation of Diffutils
	5.18.2.

	5.19. File-5.05
	5.19.0.
	5.19.1. Installation of File
	5.19.2.

	5.20. Findutils-4.4.2
	5.20.0.
	5.20.1. Installation of Findutils
	5.20.2.

	5.21. Gawk-3.1.8
	5.21.0.
	5.21.1. Installation of Gawk
	5.21.2.

	5.22. Gettext-0.18.1.1
	5.22.0.
	5.22.1. Installation of Gettext
	5.22.2.

	5.23. Grep-2.7
	5.23.0.
	5.23.1. Installation of Grep
	5.23.2.

	5.24. Gzip-1.4
	5.24.0.
	5.24.1. Installation of Gzip
	5.24.2.

	5.25. M4-1.4.15
	5.25.0.
	5.25.1. Installation of M4
	5.25.2.

	5.26. Make-3.82
	5.26.0.
	5.26.1. Installation of Make
	5.26.2.

	5.27. Patch-2.6.1
	5.27.0.
	5.27.1. Installation of Patch
	5.27.2.

	5.28. Perl-5.12.3
	5.28.0.
	5.28.1. Installation of Perl
	5.28.2.

	5.29. Sed-4.2.1
	5.29.0.
	5.29.1. Installation of Sed
	5.29.2.

	5.30. Tar-1.25
	5.30.0.
	5.30.1. Installation of Tar
	5.30.2.

	5.31. Texinfo-4.13a
	5.31.0.
	5.31.1. Installation of Texinfo
	5.31.2.

	5.32. Xz-5.0.1
	5.32.0.
	5.32.1. Installation of Xz-Utils
	5.32.2.

	5.33. Stripping
	5.34. Changing Ownership

	Part III. Building the LFS System
	Chapter 6. Installing Basic System Software
	6.1. Introduction
	6.2. Preparing Virtual Kernel File Systems
	6.2.1. Creating Initial Device Nodes
	6.2.2. Mounting and Populating /dev
	6.2.3. Mounting Virtual Kernel File Systems

	6.3. Package Management
	6.3.1. Upgrade Issues
	6.3.2. Package Management Techniques
	6.3.2.1. It is All in My Head!
	6.3.2.2. Install in Separate Directories
	6.3.2.3. Symlink Style Package Management
	6.3.2.4. Timestamp Based
	6.3.2.5. Tracing Installation Scripts
	6.3.2.6. Creating Package Archives
	6.3.2.7. User Based Management

	6.3.3. Deploying LFS on Multiple Systems

	6.4. Entering the Chroot Environment
	6.5. Creating Directories
	6.5.1. FHS Compliance Note

	6.6. Creating Essential Files and Symlinks
	6.7. Linux-2.6.37 API Headers
	6.7.0.
	6.7.1. Installation of Linux API Headers
	6.7.2. Contents of Linux API Headers

	6.8. Man-pages-3.32
	6.8.0.
	6.8.1. Installation of Man-pages
	6.8.2. Contents of Man-pages

	6.9. Glibc-2.13
	6.9.0.
	6.9.1. Installation of Glibc
	6.9.2. Configuring Glibc
	6.9.3. Configuring the Dynamic Loader
	6.9.4. Contents of Glibc

	6.10. Re-adjusting the Toolchain
	6.11. Zlib-1.2.5
	6.11.0.
	6.11.1. Installation of Zlib
	6.11.2. Contents of Zlib

	6.12. Binutils-2.21
	6.12.0.
	6.12.1. Installation of Binutils
	6.12.2. Contents of Binutils

	6.13. GMP-5.0.1
	6.13.0.
	6.13.1. Installation of GMP
	6.13.2. Contents of GMP

	6.14. MPFR-3.0.0
	6.14.0.
	6.14.1. Installation of MPFR
	6.14.2. Contents of MPFR

	6.15. MPC-0.8.2
	6.15.0.
	6.15.1. Installation of MPC
	6.15.2. Contents of MPC

	6.16. GCC-4.5.2
	6.16.0.
	6.16.1. Installation of GCC
	6.16.2. Contents of GCC

	6.17. Sed-4.2.1
	6.17.0.
	6.17.1. Installation of Sed
	6.17.2. Contents of Sed

	6.18. Pkg-config-0.25
	6.18.0.
	6.18.1. Installation of Pkg-config
	6.18.2. Contents of Pkg-config

	6.19. Ncurses-5.7
	6.19.0.
	6.19.1. Installation of Ncurses
	6.19.2. Contents of Ncurses

	6.20. Util-linux-2.19
	6.20.0.
	6.20.1. FHS compliance notes
	6.20.2. Installation of Util-linux
	6.20.3. Contents of Util-linux

	6.21. E2fsprogs-1.41.14
	6.21.0.
	6.21.1. Installation of E2fsprogs
	6.21.2. Contents of E2fsprogs

	6.22. Coreutils-8.10
	6.22.0.
	6.22.1. Installation of Coreutils
	6.22.2. Contents of Coreutils

	6.23. Iana-Etc-2.30
	6.23.0.
	6.23.1. Installation of Iana-Etc
	6.23.2. Contents of Iana-Etc

	6.24. M4-1.4.15
	6.24.0.
	6.24.1. Installation of M4
	6.24.2. Contents of M4

	6.25. Bison-2.4.3
	6.25.0.
	6.25.1. Installation of Bison
	6.25.2. Contents of Bison

	6.26. Procps-3.2.8
	6.26.0.
	6.26.1. Installation of Procps
	6.26.2. Contents of Procps

	6.27. Grep-2.7
	6.27.0.
	6.27.1. Installation of Grep
	6.27.2. Contents of Grep

	6.28. Readline-6.2
	6.28.0.
	6.28.1. Installation of Readline
	6.28.2. Contents of Readline

	6.29. Bash-4.2
	6.29.0.
	6.29.1. Installation of Bash
	6.29.2. Contents of Bash

	6.30. Libtool-2.4
	6.30.0.
	6.30.1. Installation of Libtool
	6.30.2. Contents of Libtool

	6.31. GDBM-1.8.3
	6.31.0.
	6.31.1. Installation of GDBM
	6.31.2. Contents of GDBM

	6.32. Inetutils-1.8
	6.32.0.
	6.32.1. Installation of Inetutils
	6.32.2. Contents of Inetutils

	6.33. Perl-5.12.3
	6.33.0.
	6.33.1. Installation of Perl
	6.33.2. Contents of Perl

	6.34. Autoconf-2.68
	6.34.0.
	6.34.1. Installation of Autoconf
	6.34.2. Contents of Autoconf

	6.35. Automake-1.11.1
	6.35.0.
	6.35.1. Installation of Automake
	6.35.2. Contents of Automake

	6.36. Bzip2-1.0.6
	6.36.0.
	6.36.1. Installation of Bzip2
	6.36.2. Contents of Bzip2

	6.37. Diffutils-3.0
	6.37.0.
	6.37.1. Installation of Diffutils
	6.37.2. Contents of Diffutils

	6.38. Gawk-3.1.8
	6.38.0.
	6.38.1. Installation of Gawk
	6.38.2. Contents of Gawk

	6.39. File-5.05
	6.39.0.
	6.39.1. Installation of File
	6.39.2. Contents of File

	6.40. Findutils-4.4.2
	6.40.0.
	6.40.1. Installation of Findutils
	6.40.2. Contents of Findutils

	6.41. Flex-2.5.35
	6.41.0.
	6.41.1. Installation of Flex
	6.41.2. Contents of Flex

	6.42. Gettext-0.18.1.1
	6.42.0.
	6.42.1. Installation of Gettext
	6.42.2. Contents of Gettext

	6.43. Groff-1.21
	6.43.0.
	6.43.1. Installation of Groff
	6.43.2. Contents of Groff

	6.44. GRUB-1.98
	6.44.0.
	6.44.1. Installation of GRUB
	6.44.2. Contents of GRUB

	6.45. Gzip-1.4
	6.45.0.
	6.45.1. Installation of Gzip
	6.45.2. Contents of Gzip

	6.46. IPRoute2-2.6.37
	6.46.0.
	6.46.1. Installation of IPRoute2
	6.46.2. Contents of IPRoute2

	6.47. Kbd-1.15.2
	6.47.0.
	6.47.1. Installation of Kbd
	6.47.2. Contents of Kbd

	6.48. Less-436
	6.48.0.
	6.48.1. Installation of Less
	6.48.2. Contents of Less

	6.49. Make-3.82
	6.49.0.
	6.49.1. Installation of Make
	6.49.2. Contents of Make

	6.50. Xz-5.0.1
	6.50.0.
	6.50.1. Installation of Xz
	6.50.2. Contents of Xz

	6.51. Man-DB-2.5.9
	6.51.0.
	6.51.1. Installation of Man-DB
	6.51.2. Non-English Manual Pages in LFS
	6.51.3. Contents of Man-DB

	6.52. Module-Init-Tools-3.12
	6.52.0.
	6.52.1. Installation of Module-Init-Tools
	6.52.2. Contents of Module-Init-Tools

	6.53. Patch-2.6.1
	6.53.0.
	6.53.1. Installation of Patch
	6.53.2. Contents of Patch

	6.54. Psmisc-22.13
	6.54.0.
	6.54.1. Installation of Psmisc
	6.54.2. Contents of Psmisc

	6.55. Shadow-4.1.4.3
	6.55.0.
	6.55.1. Installation of Shadow
	6.55.2. Configuring Shadow
	6.55.3. Setting the root password
	6.55.4. Contents of Shadow

	6.56. Sysklogd-1.5
	6.56.0.
	6.56.1. Installation of Sysklogd
	6.56.2. Configuring Sysklogd
	6.56.3. Contents of Sysklogd

	6.57. Sysvinit-2.88dsf
	6.57.0.
	6.57.1. Installation of Sysvinit
	6.57.2. Configuring Sysvinit
	6.57.3. Contents of Sysvinit

	6.58. Tar-1.25
	6.58.0.
	6.58.1. Installation of Tar
	6.58.2. Contents of Tar

	6.59. Texinfo-4.13a
	6.59.0.
	6.59.1. Installation of Texinfo
	6.59.2. Contents of Texinfo

	6.60. Udev-166
	6.60.0.
	6.60.1. Installation of Udev
	6.60.2. Contents of Udev

	6.61. Vim-7.3
	6.61.0.
	6.61.1. Installation of Vim
	6.61.2. Configuring Vim
	6.61.3. Contents of Vim

	6.62. About Debugging Symbols
	6.63. Stripping Again
	6.64. Cleaning Up

	Chapter 7. Setting Up System Bootscripts
	7.1. Introduction
	7.2. LFS-Bootscripts-20100627
	7.2.0.
	7.2.1. Installation of LFS-Bootscripts
	7.2.2. Contents of LFS-Bootscripts

	7.3. How Do These Bootscripts Work?
	7.4. Configuring the setclock Script
	7.5. Configuring the Linux Console
	7.6. Configuring the sysklogd Script
	7.7. Creating the /etc/inputrc File
	7.8. The Bash Shell Startup Files
	7.9. Device and Module Handling on an LFS System
	7.9.1. History
	7.9.2. Udev Implementation
	7.9.2.1. Sysfs
	7.9.2.2. Udev Bootscript
	7.9.2.3. Device Node Creation
	7.9.2.4. Module Loading
	7.9.2.5. Handling Hotpluggable/Dynamic Devices

	7.9.3. Problems with Loading Modules and Creating Devices
	7.9.3.1. A kernel module is not loaded automatically
	7.9.3.2. A kernel module is not loaded automatically, and Udev is not intended to load it
	7.9.3.3. Udev loads some unwanted module
	7.9.3.4. Udev creates a device incorrectly, or makes a wrong symlink
	7.9.3.5. Udev rule works unreliably
	7.9.3.6. Udev does not create a device
	7.9.3.7. Device naming order changes randomly after rebooting

	7.9.4. Useful Reading

	7.10. Creating Custom Symlinks to Devices
	7.10.1. CD-ROM symlinks
	7.10.2. Dealing with duplicate devices

	7.11. Configuring the localnet Script
	7.12. Customizing the /etc/hosts File
	7.13. Configuring the network Script
	7.13.1. Creating stable names for network interfaces
	7.13.2. Creating Network Interface Configuration Files
	7.13.3. Creating the /etc/resolv.conf File

	Chapter 8. Making the LFS System Bootable
	8.1. Introduction
	8.2. Creating the /etc/fstab File
	8.3. Linux-2.6.37
	8.3.0.
	8.3.1. Installation of the kernel
	8.3.2. Configuring Linux Module Load Order
	8.3.3. Contents of Linux

	8.4. Using GRUB to Set Up the Boot Process
	8.4.1. Introduction
	8.4.2. Setting Up the Configuration
	8.4.3. Testing the Configuration
	8.4.4. Updating the Master Boot Record

	Chapter 9. The End
	9.1. The End
	9.2. Get Counted
	9.3. Rebooting the System
	9.4. What Now?

	Part IV. Appendices
	Appendix A. Acronyms and Terms
	Appendix B. Acknowledgments
	Appendix C. Dependencies
	Appendix D. Boot and sysconfig scripts version-20100627
	D.1. /etc/rc.d/init.d/rc
	D.2. /etc/rc.d/init.d/functions
	D.3. /etc/rc.d/init.d/mountkernfs
	D.4. /etc/rc.d/init.d/consolelog
	D.5. /etc/rc.d/init.d/modules
	D.6. /etc/rc.d/init.d/udev
	D.7. /etc/rc.d/init.d/swap
	D.8. /etc/rc.d/init.d/setclock
	D.9. /etc/rc.d/init.d/checkfs
	D.10. /etc/rc.d/init.d/mountfs
	D.11. /etc/rc.d/init.d/udev_retry
	D.12. /etc/rc.d/init.d/cleanfs
	D.13. /etc/rc.d/init.d/console
	D.14. /etc/rc.d/init.d/localnet
	D.15. /etc/rc.d/init.d/sysctl
	D.16. /etc/rc.d/init.d/sysklogd
	D.17. /etc/rc.d/init.d/network
	D.18. /etc/rc.d/init.d/sendsignals
	D.19. /etc/rc.d/init.d/reboot
	D.20. /etc/rc.d/init.d/halt
	D.21. /etc/rc.d/init.d/template
	D.22. /etc/sysconfig/rc
	D.23. /etc/sysconfig/modules
	D.24. /etc/sysconfig/createfiles
	D.25. /etc/sysconfig/network-devices/ifup
	D.26. /etc/sysconfig/network-devices/ifdown
	D.27. /etc/sysconfig/network-devices/services/ipv4-static
	D.28. /etc/sysconfig/network-devices/services/ipv4-static-route

	Appendix E. Udev configuration rules
	E.1. 55-lfs.rules

	Appendix F. LFS Licenses
	F.1. Creative Commons License
	F.2. The MIT License

	Index

